
James W Checco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7738904/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of endogenous peptide stereochemistry using liquid chromatography-mass spectrometry-based spiking experiments. Methods in Enzymology, 2022, 663, 205-234.	1.0	2
2	Peptidomics analysis reveals changes in small urinary peptides in patients with interstitial cystitis/bladder pain syndrome. Scientific Reports, 2022, 12, 8289.	3.3	4
3	Trimer-to-Monomer Disruption Mechanism for a Potent, Protease-Resistant Antagonist of Tumor Necrosis Factor-α Signaling. Journal of the American Chemical Society, 2022, 144, 9610-9617.	13.7	5
4	Mass Spectrometry Approaches Empowering Neuropeptide Discovery and Therapeutics. Pharmacological Reviews, 2022, 74, 662-679.	16.0	5
5	Advancing d-amino acid-containing peptide discovery in the metazoan. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2021, 1869, 140553.	2.3	17
6	Identifying Receptors for Neuropeptides and Peptide Hormones: Challenges and Recent Progress. ACS Chemical Biology, 2021, 16, 251-263.	3.4	16
7	Evaluating functional ligand-GPCR interactions in cell-based assays. Methods in Cell Biology, 2021, 166, 15-42.	1.1	3
8	Differential Post-Translational Amino Acid Isomerization Found among Neuropeptides inAplysia californica. ACS Chemical Biology, 2020, 15, 272-281.	3.4	19
9	Tumor Necrosis Factor-α Trimer Disassembly and Inactivation via Peptide-Small Molecule Synergy. ACS Chemical Biology, 2020, 15, 2116-2124.	3.4	5
10	Molecular and Physiological Characterization of a Receptor for <scp>d</scp> -Amino Acid-Containing Neuropeptides. ACS Chemical Biology, 2018, 13, 1343-1352.	3.4	27
11	Aplysia allatotropin-related peptide and its newly identified d-amino acid–containing epimer both activate a receptor and a neuronal target. Journal of Biological Chemistry, 2018, 293, 16862-16873.	3.4	25
12	Conformational investigation of the structure–activity relationship of GdFFD and its analogues on an achatin-like neuropeptide receptor of <i>Aplysia californica</i> involved in the feeding circuit. Physical Chemistry Chemical Physics, 2018, 20, 22047-22057.	2.8	13
13	Non-targeted Identification of d-Amino Acid-Containing Peptides Through Enzymatic Screening, Chiral Amino Acid Analysis, and LC-MS. Methods in Molecular Biology, 2018, 1719, 107-118.	0.9	4
14	Iterative Nonproteinogenic Residue Incorporation Yields α/βâ€Peptides with a Helix–Loop–Helix Tertiary Structure and High Affinity for VEGF. ChemBioChem, 2017, 18, 291-299.	2.6	19
15	Targeting recognition surfaces on natural proteins with peptidic foldamers. Current Opinion in Structural Biology, 2016, 39, 96-105.	5.7	76
16	Targeting diverse protein–protein interaction interfaces with α∬²-peptides derived from the Z-domain scaffold. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4552-4557.	7.1	93
17	α/β-Peptide Foldamers Targeting Intracellular Protein–Protein Interactions with Activity in Living Cells. Journal of the American Chemical Society, 2015, 137, 11365-11375.	13.7	101
18	Structureâ€Guided Rational Design of α/βâ€Peptide Foldamers with High Affinity for BCLâ€2 Family Prosurvival Proteins. ChemBioChem, 2013, 14, 1564-1572.	2.6	65

#	Article	IF	CITATIONS
19	Extending Foldamer Design beyond α-Helix Mimicry: α/β-Peptide Inhibitors of Vascular Endothelial Growth Factor Signaling. Journal of the American Chemical Society, 2012, 134, 7652-7655.	13.7	92