Renaud Nicolaÿ

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7738727/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis. Science, 2017, 356, 62-65.	12.6	901
2	Vinylogous Urethane Vitrimers. Advanced Functional Materials, 2015, 25, 2451-2457.	14.9	763
3	Self-Healing Polymer Films Based on Thiol–Disulfide Exchange Reactions and Self-Healing Kinetics Measured Using Atomic Force Microscopy. Macromolecules, 2012, 45, 142-149.	4.8	407
4	Vitrimers: Permanently crosslinked polymers with dynamic network topology. Progress in Polymer Science, 2020, 104, 101233.	24.7	379
5	Chemical control of the viscoelastic properties of vinylogous urethane vitrimers. Nature Communications, 2017, 8, 14857.	12.8	365
6	Role of Cu ⁰ in Controlled/"Living―Radical Polymerization. Macromolecules, 2007, 40, 7795-7806.	4.8	268
7	Responsive Gels Based on a Dynamic Covalent Trithiocarbonate Cross-Linker. Macromolecules, 2010, 43, 4355-4361.	4.8	204
8	Fluorinated Vitrimer Elastomers with a Dual Temperature Response. Journal of the American Chemical Society, 2018, 140, 13272-13284.	13.7	181
9	Polybutadiene Vitrimers Based on Dioxaborolane Chemistry and Dual Networks with Static and Dynamic Cross-links. Macromolecules, 2019, 52, 7102-7113.	4.8	139
10	Polydimethylsiloxane quenchable vitrimers. Polymer Chemistry, 2017, 8, 6590-6593.	3.9	136
11	Transformation of polyethylene into a vitrimer by nitroxide radical coupling of a bis-dioxaborolane. Polymer Chemistry, 2019, 10, 3107-3115.	3.9	98
12	A Green Route to Wellâ€Defined Highâ€Molecularâ€Weight (Co)polymers Using ARGET ATRP with Alkyl Pseudohalides and Copper Catalysis. Angewandte Chemie - International Edition, 2010, 49, 541-544.	13.8	94
13	How Far Can We Push Polymer Architectures?. Journal of the American Chemical Society, 2013, 135, 11421-11424.	13.7	89
14	Concurrent ATRP/RAFT of Styrene and Methyl Methacrylate with Dithioesters Catalyzed by Copper(I) Complexes. Macromolecules, 2008, 41, 6602-6604.	4.8	84
15	Synthesis of poly(vinyl acetate) block copolymers by successive RAFT and ATRP with a bromoxanthate iniferter. Chemical Communications, 2008, , 5336.	4.1	80
16	The balance between intramolecular hydrogen bonding, polymer solubility and rigidity in single-chain polymeric nanoparticles. Polymer Chemistry, 2013, 4, 2584.	3.9	71
17	Dually Crosslinked Polymer Networks Incorporating Dynamic Covalent Bonds. Polymers, 2021, 13, 396.	4.5	61
18	Synergistic Interaction Between ATRP and RAFT: Taking the Best of Each World. Australian Journal of Chemistry, 2009, 62, 1384.	0.9	54

Renaud Nicolaÿ

#	Article	IF	CITATIONS
19	Polythiol copolymers with precise architectures: a platform for functional materials. Polymer Chemistry, 2014, 5, 4601.	3.9	54
20	Synthesis of Well-Defined Polythiol Copolymers by RAFT Polymerization. Macromolecules, 2012, 45, 821-827.	4.8	53
21	Evaluation of thiocarbonyl and thioester moieties as thiol protecting groups for controlled radical polymerization. Polymer Chemistry, 2013, 4, 5577.	3.9	41
22	A Simple and Efficient Synthesis of RAFT Chain Transfer Agents via Atom Transfer Radical Additionâ^'Fragmentation. Macromolecules, 2009, 42, 3738-3742.	4.8	39
23	Synthesis of Polyethylene Vitrimers in a Single Step: Consequences of Graft Structure, Reactive Extrusion Conditions, and Processing Aids. Macromolecules, 2021, 54, 2213-2225.	4.8	37
24	Oneâ€pot deprotection and functionalization of polythiol copolymers via six different thiol–X reactions. Polymer International, 2014, 63, 887-893.	3.1	25
25	Functionalization of polyisoprene and polystyrene <i>via</i> reactive processing using azidoformate grafting agents, and its application to the synthesis of dioxaborolane-based polyisoprene vitrimers. Polymer Chemistry, 2020, 11, 6479-6491.	3.9	20
26	ATRP with Alkyl Pseudohalides Acting as Initiators and Chain Transfer Agents: When ATRP and RAFT Polymerization Become One. Israel Journal of Chemistry, 2012, 52, 288-305.	2.3	19
27	Efficient Polymerization Inhibition Systems for Acrylic Acid Distillation: New Liquid-Phase Inhibitors. Industrial & Engineering Chemistry Research, 2012, 51, 3910-3915.	3.7	16
28	Synthesis of molecular brushes by telomerization. Polymer Chemistry, 2017, 8, 5220-5227.	3.9	7
29	Synthesis and self-assembly of amphiphilic heterografted molecular brushes prepared by telomerization. European Polymer Journal, 2020, 141, 110080.	5.4	6
30	Associative and Thermoresponsive Aqueous Polymer Formulations Based on Imine Chemistry. ACS Applied Polymer Materials, 0, , .	4.4	2