
Brian Kronvang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7738663/publications.pdf Version: 2024-02-01

RRIAN KRONVANC

#	Article	IF	CITATIONS
1	Climate Change Effects on Runoff, Catchment Phosphorus Loading and Lake Ecological State, and Potential Adaptations. Journal of Environmental Quality, 2009, 38, 1930-1941.	2.0	502
2	Phosphorus Retention in Riparian Buffers: Review of Their Efficiency. Journal of Environmental Quality, 2009, 38, 1942-1955.	2.0	287
3	Nutrient pressures and ecological responses to nutrient loading reductions in Danish streams, lakes and coastal waters. Journal of Hydrology, 2005, 304, 274-288.	5.4	264
4	Climate change effects on nitrogen loading from cultivated catchments in Europe: implications for nitrogen retention, ecological state of lakes and adaptation. Hydrobiologia, 2011, 663, 1-21.	2.0	242
5	Sensors in the Stream: The High-Frequency Wave of the Present. Environmental Science & Technology, 2016, 50, 10297-10307.	10.0	239
6	Effects of policy measures implemented in Denmark on nitrogen pollution of the aquatic environment. Environmental Science and Policy, 2008, 11, 144-152.	4.9	197
7	Policies for agricultural nitrogen management—trends, challenges and prospects for improved efficiency in Denmark. Environmental Research Letters, 2014, 9, 115002.	5.2	184
8	CHOICE OF SAMPLING STRATEGY AND ESTIMATION METHOD FOR CALCULATING NITROGEN AND PHOSPHORUS TRANSPORT IN SMALL LOWLAND STREAMS. Hydrological Processes, 1996, 10, 1483-1501.	2.6	171
9	Riparian Buffer Strips as a Multifunctional Management Tool in Agricultural Landscapes: Introduction. Journal of Environmental Quality, 2012, 41, 297-303.	2.0	166
10	SUSPENDED SEDIMENT AND PARTICULATE PHOSPHORUS TRANSPORT AND DELIVERY PATHWAYS IN AN ARABLE CATCHMENT, GELBÆK STREAM, DENMARK. Hydrological Processes, 1997, 11, 627-642.	2.6	149
11	Climate-change impacts on hydrology and nutrients in a Danish lowland river basin. Science of the Total Environment, 2006, 365, 223-237.	8.0	147
12	Phosphorus Losses from Agricultural Areas in River Basins. Journal of Environmental Quality, 2005, 34, 2129-2144.	2.0	132
13	Sources, occurrence and predicted aquatic impact of legacy and contemporary pesticides in streams. Environmental Pollution, 2015, 200, 64-76.	7.5	129
14	Dynamics of phosphorus compounds in a lowland river system: Importance of retention and non-point sources. Hydrological Processes, 1995, 9, 119-142.	2.6	116
15	Phosphorus losses at the catchment scale within Europe: an overview. Soil Use and Management, 2007, 23, 104-116.	4.9	113
16	Loss of dissolved and particulate phosphorus from arable catchments by subsurface drainage. Water Research, 1996, 30, 2633-2642.	11.3	111
17	Lake and catchment management in Denmark. Hydrobiologia, 1999, 395/396, 419-432.	2.0	109
18	Hydromorphological and biological factors influencing sediment and phosphorus loss via bank erosion in small lowland rural streams in Denmark, Hydrological Processes, 2003, 17, 3443-3463.	2.6	103

Brian Kronvang

#	Article	IF	CITATIONS
19	Impacts of pesticides and natural stressors on leaf litter decomposition in agricultural streams. Science of the Total Environment, 2012, 416, 148-155.	8.0	97
20	Subsurface Drainage Loss of Particles and Phosphorus from Field Plot Experiments and a Tileâ€Drained Catchment. Journal of Environmental Quality, 1999, 28, 576-584.	2.0	95
21	Phosphorus Load to Surface Water from Bank Erosion in a Danish Lowland River Basin. Journal of Environmental Quality, 2012, 41, 304-313.	2.0	89
22	Re-establishment of Danish streams: Restoration and maintenance measures. Aquatic Conservation: Marine and Freshwater Ecosystems, 1993, 3, 73-92.	2.0	88
23	Non-point-source nutrient losses to the aquatic environment in Denmark: impact of agriculture. Marine and Freshwater Research, 1995, 46, 167.	1.3	86
24	The export of particulate matter, particulate phosphorus and dissolved phosphorus from two agricultural river basins: Implications on estimating the non-point phosphorus load. Water Research, 1992, 26, 1347-1358.	11.3	84
25	Retention of nitrogen and phosphorus in a Danish lowland river system: implications for the export from the watershed. Hydrobiologia, 1993, 251, 123-135.	2.0	80
26	Retention of nutrients in river basins. Aquatic Ecology, 1999, 33, 29-40.	1.5	78
27	Long-term, habitat-specific response of a macroinvertebrate community to river restoration. Aquatic Conservation: Marine and Freshwater Ecosystems, 1998, 8, 87-99.	2.0	77
28	Ensemble modelling of nutrient loads and nutrient load partitioning in 17 European catchments. Journal of Environmental Monitoring, 2009, 11, 572.	2.1	75
29	Evaluation of nutrient retention in four restored Danish riparian wetlands. Hydrobiologia, 2011, 674, 5-24.	2.0	74
30	Nitrogen and Phosphorus Removal from Agricultural Runoff in Integrated Buffer Zones. Environmental Science & Technology, 2018, 52, 6508-6517.	10.0	71
31	Buffer strip width and agricultural pesticide contamination in Danish lowland streams: Implications for stream and riparian management. Ecological Engineering, 2011, 37, 1990-1997.	3.6	65
32	Stream habitat structure influences macroinvertebrate response to pesticides. Environmental Pollution, 2012, 164, 142-149.	7.5	64
33	Description of nine nutrient loss models: capabilities and suitability based on their characteristics. Journal of Environmental Monitoring, 2009, 11, 506.	2.1	59
34	Changes in nitrogen loads to estuaries following implementation of governmental action plans in Denmark: A paired catchment and estuary approach for analysing regional responses. Environmental Science and Policy, 2012, 24, 24-33.	4.9	59
35	The multifunctional roles of vegetated strips around and within agricultural fields. Environmental Evidence, 2018, 7, .	2.7	59
36	A catchment scale evaluation of multiple stressor effects in headwater streams. Science of the Total Environment, 2013, 442, 420-431.	8.0	56

#	Article	IF	CITATIONS
37	International Phosphorus Workshop: Diffuse Phosphorus Loss to Surface Water Bodies—Risk Assessment, Mitigation Options, and Ecological Effects in River Basins. Journal of Environmental Quality, 2009, 38, 1924-1929.	2.0	55
38	Effects of a triazole fungicide and a pyrethroid insecticide on the decomposition of leaves in the presence or absence of macroinvertebrate shredders. Aquatic Toxicology, 2012, 118-119, 54-61.	4.0	54
39	Nitrogen and phosphorus retention in surface waters: an inter-comparison of predictions by catchment models of different complexity. Journal of Environmental Monitoring, 2009, 11, 584.	2.1	53
40	A distributed modelling system for simulation of monthly runoff and nitrogen sources, loads and sinks for ungauged catchments in Denmark. Journal of Environmental Monitoring, 2011, 13, 2645.	2.1	53
41	Importance of bank erosion for sediment input, storage and export at the catchment scale. Journal of Soils and Sediments, 2013, 13, 230-241.	3.0	53
42	Efficiency of mitigation measures targeting nutrient losses from agricultural drainage systems: A review. Ambio, 2020, 49, 1820-1837.	5.5	53
43	Low phosphorus release but high nitrogen removal in two restored riparian wetlands inundated with agricultural drainage water. Ecological Engineering, 2012, 46, 75-87.	3.6	48
44	Restoration of the rivers Brede, Cole and Skerne: a joint Danish and British EU-LIFE demonstration project, Ill—channel morphology, hydrodynamics and transport of sediment and nutrients. Aquatic Conservation: Marine and Freshwater Ecosystems, 1998, 8, 209-222.	2.0	46
45	Water Exchange and Deposition of Sediment and Phosphorus during Inundation of Natural and Restored Lowland Floodplains. Water, Air, and Soil Pollution, 2007, 181, 115-121.	2.4	44
46	Current Insights into the Effectiveness of Riparian Management, Attainment of Multiple Benefits, and Potential Technical Enhancements. Journal of Environmental Quality, 2019, 48, 236-247.	2.0	44
47	Restoration of a channelized reach of the River Gelså, Denmark: Effects on the macroinvertebrate community. Aquatic Conservation: Marine and Freshwater Ecosystems, 1994, 4, 289-296.	2.0	43
48	Sediment deposition and net phosphorus retention in a hydraulically restored lowland river floodplain in Denmark: combining field and laboratory experiments. Marine and Freshwater Research, 2009, 60, 638.	1.3	43
49	Integrated assessment of the impact of chemical stressors on surface water ecosystems. Science of the Total Environment, 2012, 427-428, 319-331.	8.0	41
50	Structural and functional characteristics of buffer strip vegetation in an agricultural landscape – high potential for nutrient removal but low potential for plant biodiversity. Science of the Total Environment, 2018, 628-629, 805-814.	8.0	39
51	The multifunctional roles of vegetated strips around and within agricultural fields. A systematic map protocol. Environmental Evidence, 2016, 5, .	2.7	38
52	Sediment and phosphorus export from a lowland catchment: Quantification of sources. Water, Air, and Soil Pollution, 1997, 99, 465-476.	2.4	35
53	Macroinvertebrate/sediment relationships along a pesticide gradient in Danish streams. Hydrobiologia, 2003, 494, 103-110.	2.0	34
54	Development, validation and application of Danish empirical phosphorus models. Journal of Hydrology, 2005, 304, 355-365.	5.4	33

BRIAN KRONVANG

#	Article	IF	CITATIONS
55	Ecological effects of reâ€introduction of salmonid spawning gravel in lowland Danish streams. River Research and Applications, 2009, 25, 626-638.	1.7	33
56	Pursuing collective impact: A novel indicator-based approach to assessment of shared measurements when planning for multifunctional land consolidation. Land Use Policy, 2018, 73, 102-114.	5.6	33
57	Potential impacts of a future Nordic bioeconomy on surface water quality. Ambio, 2020, 49, 1722-1735.	5.5	31
58	High-resolution monitoring of nutrients in groundwater and surface waters: process understanding, quantification of loads and concentrations, and management applications. Hydrology and Earth System Sciences, 2016, 20, 3619-3629.	4.9	30
59	Phosphorus dynamics and export in streams draining micro-catchments: Development of empirical models. Journal of Plant Nutrition and Soil Science, 2003, 166, 469-474.	1.9	29
60	Can a priori defined reference criteria be used to select reference sites in Danish streams? Implications for implementing the Water Framework Directive. Journal of Environmental Monitoring, 2009, 11, 344-352.	2.1	29
61	An Assessment of the Multifunctionality of Integrated Buffer Zones in Northwestern Europe. Journal of Environmental Quality, 2019, 48, 362-375.	2.0	29
62	Technical Note: Comparison between a direct and the standard, indirect method for dissolved organic nitrogen determination in freshwater environments with high dissolved inorganic nitrogen concentrations. Biogeosciences, 2012, 9, 4873-4884.	3.3	28
63	Diversity and Distribution of Riparian Plant Communities in Relation to Stream Size and Eutrophication. Journal of Environmental Quality, 2012, 41, 348-354.	2.0	28
64	Interacting effects of climate and agriculture on fluvial DOM in temperate and subtropical catchments. Hydrology and Earth System Sciences, 2015, 19, 2377-2394.	4.9	28
65	An overview of nutrient transport mitigation measures for improvement of water quality in Denmark. Ecological Engineering, 2020, 155, 105863.	3.6	28
66	Basin characteristics and nutrient losses: the EUROHARP catchment network perspective. Journal of Environmental Monitoring, 2009, 11, 515.	2.1	27
67	Modifying And Evaluating a P Index For Denmark. Water, Air, and Soil Pollution, 2006, 174, 341-353.	2.4	26
68	Threshold values and management options for nutrients in a catchment of a temperate estuary with poor ecological status. Hydrology and Earth System Sciences, 2012, 16, 2663-2683.	4.9	26
69	Danish and other European experiences in managing shallow lakes. Lake and Reservoir Management, 2007, 23, 439-451.	1.3	25
70	Effects of stream flooding on the distribution and diversity of groundwaterâ€dependent vegetation in riparian areas. Freshwater Biology, 2013, 58, 817-827.	2.4	25
71	Controlled Drainage as a Targeted Mitigation Measure for Nitrogen and Phosphorus. Journal of Environmental Quality, 2019, 48, 677-685.	2.0	25
72	Monitoring strategies of stream phosphorus under contrasting climate-driven flow regimes. Hydrology and Earth System Sciences, 2015, 19, 4099-4111.	4.9	24

Brian Kronvang

#	Article	IF	CITATIONS
73	Local physical habitat quality cloud the effect of predicted pesticide runoff from agricultural land in Danish streams. Journal of Environmental Monitoring, 2011, 13, 943.	2.1	23
74	Three decades of regulation of agricultural nitrogen losses: Experiences from the Danish Agricultural Monitoring Program. Science of the Total Environment, 2021, 787, 147619.	8.0	23
75	Environmental controls of plant species richness in riparian wetlands: Implications for restoration. Basic and Applied Ecology, 2015, 16, 480-489.	2.7	21
76	Towards European harmonised procedures for quantification of nutrient losses from diffuse sources—the EUROHARP project. Journal of Environmental Monitoring, 2009, 11, 503.	2.1	20
77	Landâ€use dominates climate controls on nitrogen and phosphorus export from managed and natural Nordic headwater catchments. Hydrological Processes, 2020, 34, 4831-4850.	2.6	20
78	Linking floodplain hydraulics and sedimentation patterns along a restored river channel: River Odense, Denmark. Ecological Engineering, 2014, 66, 120-128.	3.6	18
79	Modelling sediment and total phosphorus export from a lowland catchment: comparing sediment routing methods. Hydrological Processes, 2015, 29, 280-294.	2.6	18
80	Evaluating effects of weed cutting on water level and ecological status in Danish lowland streams. Freshwater Biology, 2018, 63, 652-661.	2.4	18
81	Restoration of the Rivers Brede, Cole and Skerne: a joint Danish and British EU-LIFE demonstration project, IV—implications for nitrate and iron transformation. Aquatic Conservation: Marine and Freshwater Ecosystems, 1998, 8, 223-240.	2.0	17
82	Comparison of sampling methodologies for nutrient monitoring in streams: uncertainties, costs and implications for mitigation. Hydrology and Earth System Sciences, 2014, 18, 4721-4731.	4.9	17
83	Rivers of the Central European Highlands and Plains. , 2009, , 525-576.		16
84	Management Options to Reduce Phosphorus Leaching from Vegetated Buffer Strips. Journal of Environmental Quality, 2019, 48, 322-329.	2.0	16
85	Influence of Farming Intensity and Climate on Lowland Stream Nitrogen. Water (Switzerland), 2020, 12, 1021.	2.7	16
86	Species Recruitment following Flooding, Sediment Deposition and Seed Addition in Restored Riparian Areas. Restoration Ecology, 2013, 21, 399-408.	2.9	14
87	Seed germination from deposited sediments during high winter flow in riparian areas. Ecological Engineering, 2014, 66, 103-110.	3.6	14
88	Predicting Phosphorus Losses with the PLEASE Model on a Local Scale in Denmark and the Netherlands. Journal of Environmental Quality, 2011, 40, 1617-1626.	2.0	13
89	Distributed water erosion modelling at fine spatial resolution across Denmark. Geomorphology, 2019, 342, 150-162.	2.6	12
90	Conceptual Mini-Catchment Typologies for Testing Dominant Controls of Nutrient Dynamics in Three Nordic Countries. Water (Switzerland), 2020, 12, 1776.	2.7	12

BRIAN KRONVANG

#	Article	IF	CITATIONS
91	Nitrogen in Water-Portugal and Denmark: Two Contrasting Realities. Water (Switzerland), 2019, 11, 1114.	2.7	11
92	Occurrence of Sediment-Bound Pyrethroids in Danish Streams and their Impact on Ecosystem Function. Water, Air and Soil Pollution, 2006, 6, 423-432.	0.8	10
93	Going with the flow: Planktonic processing of dissolved organic carbon in streams. Science of the Total Environment, 2018, 625, 519-530.	8.0	10
94	Groundwater nitrogen and the distribution of groundwater-dependent vegetation in riparian areas in agricultural catchments. Ecological Engineering, 2014, 66, 111-119.	3.6	9
95	A Simplified Nitrogen Assessment in Tagus River Basin: A Management Focused Review. Water (Switzerland), 2018, 10, 406.	2.7	9
96	Phosphorus Mobility in the Landscape. Agronomy, 0, , 941-979.	0.2	9
97	Linked catchment and scenario analysis of nitrogen leaching and loading: a case-study from a Danish catchment-fjord system, Mariager Fjord. Physics and Chemistry of the Earth, 2002, 27, 691-699.	2.9	8
98	Linking monitoring and modelling for river basin management: Danish experience with combating nutrient loadings to the aquatic environment from point and non-point sources. Science in China Series D: Earth Sciences, 2009, 52, 3335-3347.	0.9	8
99	Assessing net-uptake of nitrate and natural dissolved organic matter fractions in a revitalized lowland stream reach. Limnologica, 2018, 68, 82-91.	1.5	8
100	Comparing nutrient reference concentrations in Nordic countries with focus on lowland rivers. Ambio, 2020, 49, 1771-1783.	5.5	8
101	Catchment effects of a future Nordic bioeconomy: From land use to water resources. Ambio, 2020, 49, 1697-1709.	5.5	8
102	Land Use and Water Quality. Water (Switzerland), 2020, 12, 2412.	2.7	8
103	Exploring the interdisciplinary potential of the Agenda2030—Interactions between five Danish societal demands for sustainable land use. Land Use Policy, 2020, 94, 104501.	5.6	8
104	Dialysis is superior to anion exchange for removal of dissolved inorganic nitrogen from freshwater samples prior to dissolved organic nitrogen determination. Environmental Chemistry, 2012, 9, 529.	1.5	8
105	Stream characteristics and their implications for the protection of riparian fens and meadows. Freshwater Biology, 2011, 56, 1893-1903.	2.4	7
106	Nitrogen removal and greenhouse gas fluxes from integrated buffer zones treating agricultural drainage water. Science of the Total Environment, 2021, 774, 145070.	8.0	7
107	Multi-functional benefits from targeted set-aside land in a Danish catchment. Ambio, 2020, 49, 1808-1819.	5.5	6
108	Modelling diffuse nitrogen loadings of ungauged and unmonitored lakes in Denmark: Application of an integrated modelling framework. International Journal of River Basin Management, 2009, 7, 245-257.	2.7	5

BRIAN KRONVANG

#	Article	IF	CITATIONS
109	Comparison of active and passive stream restoration: effects on the physical habitats. Geografisk Tidsskrift, 2013, 113, 109-120.	0.6	5
110	Documenting success stories of management of phosphorus emissions at catchment scale: an example from the pilot river Odense, Denmark. Water Science and Technology, 2016, 74, 2097-2104.	2.5	5
111	Does Regular Harvesting Increase Plant Diversity in Buffer Strips Separating Agricultural Land and Surface Waters?. Frontiers in Environmental Science, 2018, 6, .	3.3	5
112	Suspended matter and associated contaminants in Danish streams: a national analysis. Journal of Soils and Sediments, 2019, 19, 3068-3082.	3.0	5
113	Interactions between sediments and water. Hydrobiologia, 2003, 494, 1-4.	2.0	3
114	Interactions between sediments and water: perspectives on the 12th International Association for Sediment Water Science Symposium. Journal of Soils and Sediments, 2012, 12, 1497-1500.	3.0	3
115	Longâ€ŧerm, habitatâ€specific response of a macroinvertebrate community to river restoration. Aquatic Conservation: Marine and Freshwater Ecosystems, 1998, 8, 87-99.	2.0	2
116	DNMARK: Danish Nitrogen Mitigation Assessment: Research and Know-how for a Sustainable, Low-Nitrogen Food Production. , 2020, , 363-376.		1
117	Habitat surveys as a tool to assess the benefits of stream rehabilitation II: macroinvertebrate communities. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2000, 27, 1510-1514.	0.1	0
118	Agriculture and stream water quality – future challenges for monitoring. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2015, 65, 139-143.	0.6	0
119	Occurrence of Sediment-Bound Pyrethroids in Danish Streams and Their Impact on Ecosystem Function. , 2006, , 59-68.		0

Rivers of the Central European Highlands and Plains. , 2022, , 717-773.

0