Feda'a M Al-Qaisi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7738548/publications.pdf Version: 2024-02-01

FEDA'A M AL-OAISL

#	Article	IF	CITATIONS
1	CO ₂ fixation into cyclic carbonates catalyzed by single-site aprotic organocatalysts. Reaction Chemistry and Engineering, 2022, 7, 1807-1817.	3.7	7
2	Green Microwaveâ€Assisted Synthesis of Cyclic/Acyclic Ureas from Propylene Carbonate. ChemistrySelect, 2022, 7, .	1.5	3
3	CS ₂ /CO ₂ Utilization Using Mukaiyama Reagent as a (Thio)carbonylating Promoter: A Proof-of-Concept Study. ACS Omega, 2022, 7, 22511-22521.	3.5	4
4	Interfacial Behavior of Modified Nicotinic Acid as Conventional/Gemini Surfactants. Langmuir, 2022, 38, 8524-8533.	3.5	1
5	Activation of \hat{I}^2 -diketones for CO ₂ capture and utilization. Reaction Chemistry and Engineering, 2021, 6, 2364-2375.	3.7	4
6	Cross-linked, porous imidazolium-based poly(ionic liquid)s for CO ₂ capture and utilisation. New Journal of Chemistry, 2021, 45, 16452-16460.	2.8	23
7	Mechanistic insights on CO ₂ utilization using sustainable catalysis. New Journal of Chemistry, 2021, 45, 22280-22288.	2.8	11
8	CO ₂ coupling with epoxides catalysed by using one-pot synthesised, <i>in situ</i> activated zinc ascorbate under ambient conditions. Dalton Transactions, 2020, 49, 7673-7679.	3.3	10
9	The eternal battle to combat global warming: (thio)urea as a CO ₂ wet scrubbing agent. Physical Chemistry Chemical Physics, 2020, 22, 11829-11837.	2.8	13
10	Pyridinethiolâ€Assisted Dissolution of Elemental Gold in Organic Solutions. Angewandte Chemie, 2018, 130, 17350-17355.	2.0	9
11	Pyridinethiolâ€Assisted Dissolution of Elemental Gold in Organic Solutions. Angewandte Chemie - International Edition, 2018, 57, 17104-17109.	13.8	22
12	γ-Diimine palladium(II) based complexes mediated polymerization of methyl methacrylate. Arabian Journal of Chemistry, 2017, 10, S1209-S1215.	4.9	6
13	Catalysis of Cycloaddition of Carbon Dioxide and Epoxides Using a Bifunctional Schiff Base Iron(III) Catalyst. ChemistrySelect, 2016, 1, 545-548.	1.5	29
14	Titanium Alkoxide Complexes as Catalysts for the Synthesis of Cyclic Carbonates from Carbon Dioxide and Epoxides. European Journal of Inorganic Chemistry, 2015, 2015, 5363-5367.	2.0	19
15	<i>Trans</i> ―and <i>cis</i> ―Cobalt(III), Iron(III), and Chromium(III) Complexes Based on α―and γâ€Diimine Schiff Base Ligands: Synthesis and Evaluation of the Complexes as Catalysts for Oxidation of Lâ€Cysteine. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2008, 634, 956-961.	1.2	11
16	Synthesis of Cobalt(III), Iron(III), and Chromium(III) Complexes with Salicylaldiminato Ligands: Evaluation of the Complexes as Catalysts for Oxidation of L-Cysteine. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2008, 63, 848-852.	0.7	7
17	The Use of Sustainable Transition Metals for the Cycloaddition of Epoxides and CO2 under Mild Reaction Conditions. European Journal of Inorganic Chemistry, 0, , .	2.0	1