List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/773821/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High Efficiency Photocatalytic Water Splitting Using 2D αâ€Fe ₂ O ₃ /gâ€C ₃ N ₄ Zâ€Scheme Catalysts. Advanced Energy Materials, 2017, 7, 1700025.	y 19.5	664
2	Achieving Highly Efficient, Selective, and Stable CO ₂ Reduction on Nitrogen-Doped Carbon Nanotubes. ACS Nano, 2015, 9, 5364-5371.	14.6	546
3	A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nature Communications, 2016, 7, 13869.	12.8	505
4	Liquid Phase Exfoliation of Two-Dimensional Materials by Directly Probing and Matching Surface Tension Components. Nano Letters, 2015, 15, 5449-5454.	9.1	436
5	Incorporation of Nitrogen Defects for Efficient Reduction of CO ₂ via Two-Electron Pathway on Three-Dimensional Graphene Foam. Nano Letters, 2016, 16, 466-470.	9.1	435
6	Nitrogenâ€Doped Carbon Nanotube Arrays for Highâ€Efficiency Electrochemical Reduction of CO ₂ : On the Understanding of Defects, Defect Density, and Selectivity. Angewandte Chemie - International Edition, 2015, 54, 13701-13705.	13.8	382
7	Oxygenated monolayer carbon nitride for excellent photocatalytic hydrogen evolution and external quantum efficiency. Nano Energy, 2016, 27, 138-146.	16.0	379
8	Electrochemical CO ₂ Reduction with Atomic Ironâ€Dispersed on Nitrogenâ€Doped Graphene. Advanced Energy Materials, 2018, 8, 1703487.	19.5	369
9	Self-optimizing, highly surface-active layeredÂmetal dichalcogenide catalysts for hydrogen evolution. Nature Energy, 2017, 2, .	39.5	336
10	Self-assembled synthesis of defect-engineered graphitic carbon nitride nanotubes for efficient conversion of solar energy. Applied Catalysis B: Environmental, 2018, 225, 154-161.	20.2	296
11	Unveiling Active Sites for the Hydrogen Evolution Reaction on Monolayer MoS ₂ . Advanced Materials, 2017, 29, 1701955.	21.0	249
12	Nitrogen-Doped Graphene with Pyridinic Dominance as a Highly Active and Stable Electrocatalyst for Oxygen Reduction. ACS Applied Materials & amp; Interfaces, 2015, 7, 14763-14769.	8.0	248
13	Facile Synthesis of Single Crystal Vanadium Disulfide Nanosheets by Chemical Vapor Deposition for Efficient Hydrogen Evolution Reaction. Advanced Materials, 2015, 27, 5605-5609.	21.0	241
14	2D heterostructure comprised of metallic 1T-MoS2/Monolayer O-g-C3N4 towards efficient photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 220, 379-385.	20.2	231
15	Emerging Carbonâ€Based Heterogeneous Catalysts for Electrochemical Reduction of Carbon Dioxide into Valueâ€Added Chemicals. Advanced Materials, 2019, 31, e1804257.	21.0	218
16	Electrochemical Reduction of Carbon Dioxide I. Effects of the Electrolyte on the Selectivity and Activity with Sn Electrode. Journal of the Electrochemical Society, 2012, 159, F353-F359.	2.9	198
17	Solvothermal synthesis of metallic 1T-WS2: A supporting co-catalyst on carbon nitride nanosheets toward photocatalytic hydrogen evolution. Chemical Engineering Journal, 2018, 335, 282-289.	12.7	161
18	Electrochemical reduction of carbon dioxide III. The role of oxide layer thickness on the performance of Sn electrode in a full electrochemical cell. Journal of Materials Chemistry A, 2014, 2, 1647-1651.	10.3	156

#	Article	IF	CITATIONS
19	CoNi ₂ S ₄ â€Grapheneâ€2Dâ€MoSe ₂ as an Advanced Electrode Material for Supercapacitors. Advanced Energy Materials, 2016, 6, 1600341.	19.5	145
20	Exfoliated 2D Transition Metal Disulfides for Enhanced Electrocatalysis of Oxygen Evolution Reaction in Acidic Medium. Advanced Materials Interfaces, 2016, 3, 1500669.	3.7	136
21	Gold Nanoparticles and g ₃ N ₄ â€Intercalated Graphene Oxide Membrane for Recyclable Surface Enhanced Raman Scattering. Advanced Functional Materials, 2017, 27, 1701714.	14.9	129
22	How Nitrogen-Doped Graphene Quantum Dots Catalyze Electroreduction of CO ₂ to Hydrocarbons and Oxygenates. ACS Catalysis, 2017, 7, 6245-6250.	11.2	129
23	Surface Tension Components Based Selection of Cosolvents for Efficient Liquid Phase Exfoliation of 2D Materials. Small, 2016, 12, 2741-2749.	10.0	128
24	Improving the Catalytic Activity of Carbon‣upported Single Atom Catalysts by Polynary Metal or Heteroatom Doping. Small, 2020, 16, e1906782.	10.0	124
25	Carbon Nitrogen Nanotubes as Efficient Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions. ACS Applied Materials & amp; Interfaces, 2015, 7, 11991-12000.	8.0	120
26	Highly selective and productive reduction of carbon dioxide to multicarbon products via in situ CO management using segmented tandem electrodes. Nature Catalysis, 2022, 5, 202-211.	34.4	120
27	Metal-Oxide-Mediated Subtractive Manufacturing of Two-Dimensional Carbon Nitride for High-Efficiency and High-Yield Photocatalytic H ₂ Evolution. ACS Nano, 2019, 13, 11294-11302.	14.6	109
28	3D Nanostructured Molybdenum Diselenide/Graphene Foam as Anodes for Long-Cycle Life Lithium-ion Batteries. Electrochimica Acta, 2015, 176, 103-111.	5.2	107
29	Tuning the Electrochemical Reactivity of Boron―and Nitrogenâ€6ubstituted Graphene. Advanced Materials, 2016, 28, 6239-6246.	21.0	107
30	Electrochemical reduction of carbon dioxide: IV dependence of the Faradaic efficiency and current density on the microstructure and thickness of tin electrode. Journal of Power Sources, 2014, 258, 189-194.	7.8	105
31	Catalytic conversion of CO2 to value added fuels: Current status, challenges, and future directions. Chinese Journal of Catalysis, 2016, 37, 999-1015.	14.0	105
32	Metal diselenide nanoparticles as highly active and stable electrocatalysts for the hydrogen evolution reaction. Nanoscale, 2015, 7, 14813-14816.	5.6	103
33	Electrochemical Reduction of Carbon Dioxide. Journal of the Electrochemical Society, 2013, 160, F953-F957.	2.9	98
34	Atomic Ru Immobilized on Porous h-BN through Simple Vacuum Filtration for Highly Active and Selective CO ₂ Methanation. ACS Catalysis, 2019, 9, 10077-10086.	11.2	93
35	High efficiency electrochemical reduction of CO ₂ beyond the two-electron transfer pathway on grain boundary rich ultra-small SnO ₂ nanoparticles. Journal of Materials Chemistry A, 2018, 6, 10313-10319.	10.3	92
36	Cryo-mediated exfoliation and fracturing of layered materials into 2D quantum dots. Science Advances, 2017, 3, e1701500.	10.3	91

#	Article	IF	CITATIONS
37	Reversible Formation of gâ€C ₃ N ₄ 3D Hydrogels through Ionic Liquid Activation: Gelation Behavior and Roomâ€Temperature Gasâ€Sensing Properties. Advanced Functional Materials, 2017, 27, 1700653.	14.9	90
38	Regulation of functional groups on graphene quantum dots directs selective CO2 to CH4 conversion. Nature Communications, 2021, 12, 5265.	12.8	89
39	A Facile "Doubleâ€Catalysts―Approach to Directionally Fabricate Pyridinic NBâ€Pairâ€Doped Crystal Graphene Nanoribbons/Amorphous Carbon Hybrid Electrocatalysts for Efficient Oxygen Reduction Reaction. Advanced Materials, 2022, 34, e2107040.	21.0	88
40	2D TiS ₂ Layers: A Superior Nonlinear Optical Limiting Material. Advanced Optical Materials, 2017, 5, 1700713.	7.3	84
41	3D Coral-Like Ni ₃ S ₂ on Ni Foam as a Bifunctional Electrocatalyst for Overall Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 31330-31339.	8.0	80
42	Facile synthesis of CoNi 2 S 4 and CuCo 2 S 4 with different morphologies as prominent catalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2016, 41, 19847-19854.	7.1	73
43	Carbon Dioxide Hydrogenation over a Metal-Free Carbon-Based Catalyst. ACS Catalysis, 2017, 7, 4497-4503.	11.2	71
44	Enhancing charge density and steering charge unidirectional flow in 2D non-metallic semiconductor-CNTs-metal coupled photocatalyst for solar energy conversion. Applied Catalysis B: Environmental, 2017, 202, 112-117.	20.2	71
45	Doping Nanoscale Graphene Domains Improves Magnetism in Hexagonal Boron Nitride. Advanced Materials, 2019, 31, e1805778.	21.0	69
46	Spontaneous self-intercalation of copper atoms into transition metal dichalcogenides. Science Advances, 2020, 6, eaay4092.	10.3	67
47	In-situ formation of hierarchical 1D-3D hybridized carbon nanostructure supported nonnoble transition metals for efficient electrocatalysis of oxygen reaction. Applied Catalysis B: Environmental, 2019, 243, 151-160.	20.2	66
48	Remarkable supercapacitive performance of TiO2 nanotube arrays by introduction of oxygen vacancies. Chemical Engineering Journal, 2017, 313, 1071-1081.	12.7	64
49	Steering charge transfer for boosting photocatalytic H2 evolution: Integration of two-dimensional semiconductor superiorities and noble-metal-free Schottky junction effect. Applied Catalysis B: Environmental, 2019, 245, 477-485.	20.2	64
50	Tandem Electrodes for Carbon Dioxide Reduction into C2+ Products at Simultaneously High Production Efficiency and Rate. Cell Reports Physical Science, 2020, 1, 100051.	5.6	60
51	Amineâ€Functionalized Carbon Nanodot Electrocatalysts Converting Carbon Dioxide to Methane. Advanced Materials, 2022, 34, e2105690.	21.0	59
52	Discovering superior basal plane active two-dimensional catalysts for hydrogen evolution. Materials Today, 2019, 25, 28-34.	14.2	58
53	Accelerating Photogenerated Charge Kinetics via the Synergetic Utilization of 2D Semiconducting Structural Advantages and Nobleâ€Metalâ€Free Schottky Junction Effect. Small, 2019, 15, e1804613.	10.0	56
54	Enhance CO2-to-C2+ products yield through spatial management of CO transport in Cu/ZnO tandem electrodes. Journal of Catalysis, 2020, 387, 163-169.	6.2	56

#	Article	IF	CITATIONS
55	Spiral Growth of SnSe ₂ Crystals by Chemical Vapor Deposition. Advanced Materials Interfaces, 2016, 3, 1600383.	3.7	55
56	Grain Boundaryâ€Derived Cu ⁺ /Cu ⁰ Interfaces in CuO Nanosheets for Low Overpotential Carbon Dioxide Electroreduction to Ethylene. Advanced Science, 2022, 9, .	11.2	51
57	Water-Soluble Defect-Rich MoS ₂ Ultrathin Nanosheets for Enhanced Hydrogen Evolution. Journal of Physical Chemistry Letters, 2019, 10, 3282-3289.	4.6	50
58	Vertically Aligned Carbon Nanotubes/Graphene Hybrid Electrode as a TCO- and Pt-Free Flexible Cathode for Application in Solar Cells. Journal of Materials Chemistry A, 2014, 2, 20902-20907.	10.3	47
59	Dynamic Hosts for High-Performance Li–S Batteries Studied by Cryogenic Transmission Electron Microscopy and in Situ X-ray Diffraction. ACS Energy Letters, 2018, 3, 1325-1330.	17.4	47
60	Efficient photocatalytic hydrogen evolution mediated by defect-rich 1T-PtS ₂ atomic layer nanosheet modified mesoporous graphitic carbon nitride. Journal of Materials Chemistry A, 2019, 7, 18906-18914.	10.3	44
61	Grain-boundary surface terminations incorporating oxygen vacancies for selectively boosting CO2 photoreduction activity. Nano Energy, 2021, 84, 105869.	16.0	43
62	Controllable synthesized heterostructure photocatalyst Mo ₂ C@C/2D g-C ₃ N ₄ : enhanced catalytic performance for hydrogen production. Dalton Transactions, 2018, 47, 14706-14712.	3.3	41
63	MoS2 quantum dots decorated ultrathin NiO nanosheets for overall water splitting. Journal of Colloid and Interface Science, 2020, 566, 411-418.	9.4	38
64	Origin of the performance degradation and implementation of stable tin electrodes for the conversion of CO2 to fuels. Nano Energy, 2016, 27, 225-229.	16.0	37
65	Ultrathin carbon coated mesoporous Ni-NiFe2O4 nanosheet arrays for efficient overall water splitting. Electrochimica Acta, 2019, 321, 134652.	5.2	37
66	3D carbon coated NiCo2S4 nanowires doped with nitrogen for electrochemical energy storage and conversion. Journal of Colloid and Interface Science, 2019, 556, 449-457.	9.4	37
67	Metallic cobalt nanoparticles embedded in sulfur and nitrogen co-doped rambutan-like nanocarbons for the oxygen reduction reaction under both acidic and alkaline conditions. Journal of Materials Chemistry A, 2019, 7, 14291-14301.	10.3	37
68	CuO/ZnO/C electrocatalysts for CO2-to-C2+ products conversion with high yield: On the effect of geometric structure and composition. Applied Catalysis A: General, 2020, 606, 117829.	4.3	34
69	Selective formation of C2 products from the electrochemical conversion of CO2 on CuO-derived copper electrodes comprised of nanoporous ribbon arrays. Catalysis Today, 2017, 288, 18-23.	4.4	33
70	Hierarchical NiCo2O4/MnO2 core–shell nanosheets arrays for flexible asymmetric supercapacitor. Journal of Materials Science, 2020, 55, 688-700.	3.7	31
71	Atomic Layered Titanium Sulfide Quantum Dots as Electrocatalysts for Enhanced Hydrogen Evolution Reaction. Advanced Materials Interfaces, 2018, 5, 1700895.	3.7	30
72	Nickel–Nitrogen–Carbon Molecular Catalysts for High Rate CO ₂ Electro-reduction to CO: On the Role of Carbon Substrate and Reaction Chemistry. ACS Applied Energy Materials, 2020, 3, 1617-1626.	5.1	28

#	Article	IF	CITATIONS
73	Large-scale synthesis of few-layer graphene from magnesium and different carbon sources and its application in dye-sensitized solar cells. Materials and Design, 2016, 92, 462-470.	7.0	27
74	Carbon-Coated Self-Assembled Ultrathin T-Nb ₂ O ₅ Nanosheets for High-Rate Lithium-Ion Storage with Superior Cycling Stability. ACS Applied Energy Materials, 2020, 3, 12037-12045.	5.1	26
75	Self-assembly of 0D/2D homostructure for enhanced hydrogen evolution. Materials Today, 2020, 36, 83-90.	14.2	24
76	Reconstructing two-dimensional defects in CuO nanowires for efficient CO ₂ electroreduction to ethylene. Chemical Communications, 2021, 57, 8276-8279.	4.1	20
77	Effects of the Electrolyte on Electrochemical Reduction of CO ₂ on Sn Electrode. ECS Transactions, 2012, 41, 49-60.	0.5	19
78	Confinement of Intermediates in Blue TiO 2 Nanotube Arrays Boosts Reaction Rate of Nitrogen Electrocatalysis. ChemCatChem, 2020, 12, 2760-2767.	3.7	18
79	Enhancing Defects of N-Doped Carbon Nanospheres Via Ultralow Co Atom Loading Engineering for a High-Efficiency Oxygen Reduction Reaction. ACS Applied Energy Materials, 2021, 4, 3439-3447.	5.1	18
80	Insight into In Situ Amphiphilic Functionalization of Fewâ€Layered Transition Metal Dichalcogenide Nanosheets. Advanced Materials, 2016, 28, 8469-8476.	21.0	16
81	CoO Quantum Dots Anchored on Reduced Graphene Oxide Aerogels for Lithium-Ion Storage. ACS Applied Nano Materials, 2020, 3, 10369-10379.	5.0	16
82	Tuning Morphology and Electronic Structure of Amorphous NiFeB Nanosheets for Enhanced Electrocatalytic N ₂ Reduction. ACS Applied Energy Materials, 2020, 3, 9516-9522.	5.1	16
83	Nickel phthalocyanine-tetrasulfonic acid as a promoter of methanol electro-oxidation on Pt/C catalyst. Journal of Applied Electrochemistry, 2008, 38, 875-879.	2.9	15
84	Planar defect-driven electrocatalysis of CO ₂ -to-C ₂ H ₄ conversion. Journal of Materials Chemistry A, 2021, 9, 19932-19939.	10.3	15
85	Growth of Molybdenum Carbide–Graphene Hybrids from Molybdenum Disulfide Atomic Layer Template. Advanced Materials Interfaces, 2017, 4, 1600866.	3.7	14
86	Highly Efficient Adsorption of Oils and Pollutants by Porous Ultrathin Oxygen-Modified BCN Nanosheets. ACS Sustainable Chemistry and Engineering, 2019, 7, 3234-3242.	6.7	14
87	Directly Exfoliated Ultrathin Silicon Nanosheets for Enhanced Photocatalytic Hydrogen Production. Journal of Physical Chemistry Letters, 2020, 11, 8668-8674.	4.6	14
88	Metal Nanoparticles Confined within an Inorganic–Organic Framework Enable Superior Substrate-Selective Catalysis. ACS Applied Materials & Interfaces, 2020, 12, 42739-42748.	8.0	14
89	Towards methyl orange degradation by direct sunlight using coupled TiO2 nanoparticles and carbonized cotton T-shirt. Applied Materials Today, 2016, 3, 57-62.	4.3	12
90	Metallic 1T-TiS ₂ nanodots anchored on a 2D graphitic C ₃ N ₄ nanosheet nanostructure with high electron transfer capability for enhanced photocatalytic performance. RSC Advances, 2017, 7, 55269-55275.	3.6	12

JINGJIE WU

#	Article	IF	CITATIONS
91	Reflux pretreatment-mediated sonication: A new universal route to obtain 2D quantum dots. Materials Today, 2019, 22, 17-24.	14.2	12
92	In-situ synthesis of carbon-coated β-NiS nanocrystals for hydrogen evolution reaction in both acidic and alkaline solution. International Journal of Hydrogen Energy, 2018, 43, 16061-16067.	7.1	11
93	Pseudocapacitive TiNb2O7/reduced graphene oxide nanocomposite for high–rate lithium ion hybrid capacitors. Journal of Colloid and Interface Science, 2022, 610, 385-394.	9.4	11
94	Strong Effect of B-Site Substitution on the Reactivity of Layered Perovskite Oxides Probed via Isopropanol Conversion. , 2019, 1, 230-236.		10
95	Enhanced supercapacitive performance of novel ultrathin SiC nanosheets directly by liquid phase exfoliation. Inorganic Chemistry Communication, 2019, 106, 174-179.	3.9	9
96	Carbon Nanolayer-Wrapped Mesoporous TiO ₂ –B/Anatase for Li ⁺ Storage. ACS Applied Nano Materials, 2021, 4, 7832-7839.	5.0	8
97	A novel catalyst Pt@NiPcTs/C: Synthesis, structural and electro-oxidation for methanol. Catalysis Communications, 2009, 10, 1271-1274.	3.3	7
98	Tunable Synthesis of 3D Niobium Oxynitride Nanosheets for Lithium-Ion Hybrid Capacitors with High Energy/Power Density. ACS Sustainable Chemistry and Engineering, 2021, 9, 14569-14578.	6.7	7
99	Switching CO ₂ Electroreduction Selectivity Between C ₁ and C ₂ Hydrocarbons on Cu Gasâ€Diffusion Electrodes. Energy and Environmental Materials, 2023, 6, .	12.8	7
100	Oxygen Reduction Reaction on Active and Stable Nanoscale TiSi ₂ Supported Electrocatalysts. Journal of the Electrochemical Society, 2012, 159, B654-B660.	2.9	6
101	Boron Doping in Tin Catalysts Towards Gas-Phase CO ₂ to Formic Acid/Formate Electroreduction with High Production Efficiency and Rate. Journal of the Electrochemical Society, 2020, 167, 114508.	2.9	4
102	Solvent-controlled formation of a reduced graphite oxide gel via hydrogen bonding. RSC Advances, 2016, 6, 27267-27271.	3.6	2
103	Promotion of catalytic activity for methanol electro-oxidation on CoPc-Pt/C co-catalysts. Science Bulletin, 2009, 54, 1032-1036.	9.0	1
104	Hydrogels: Reversible Formation of gâ€C ₃ N ₄ 3D Hydrogels through Ionic Liquid Activation: Gelation Behavior and Roomâ€Temperature Gasâ€Sensing Properties (Adv. Funct. Mater.) Tj ETQq0 0	0 r gB T /O	ve t lock 10 T

105 Enhanced nonlinear optical limiting in TiS2 dichalcogenide 2D Sheets. , 2017, , .

0