Georg R Zoidl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7737802/publications.pdf

Version: 2024-02-01

			172457	214800
73		2,436	29	47
papers		citations	h-index	g-index
	. '			
77		77	77	2530
all docs		docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Siteâ€specific and developmental expression of pannexin1 in the mouse nervous system. European Journal of Neuroscience, 2005, 21, 3277-3290.	2.6	192
2	Major occurrence of the new $\hat{l}\pm2\hat{l}^21$ isoform of NO-sensitive guanylyl cyclase in brain. Cellular Signalling, 2003, 15, 189-195.	3.6	151
3	Pannexin1 Stabilizes Synaptic Plasticity and Is Needed for Learning. PLoS ONE, 2012, 7, e51767.	2.5	121
4	A Phosphodiesterase 2A Isoform Localized to Mitochondria Regulates Respiration. Journal of Biological Chemistry, 2011, 286, 30423-30432.	3.4	115
5	The neuronal connexin36 interacts with and is phosphorylated by CaMKII in a way similar to CaMKII interaction with glutamate receptors. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20964-20969.	7.1	110
6	Synaptic Transmission from Horizontal Cells to Cones Is Impaired by Loss of Connexin Hemichannels. PLoS Biology, 2011, 9, e1001107.	5 . 6	83
7	Expression of neural connexins and pannexin1 in the hippocampus and inferior olive: a quantitative approach. Molecular Brain Research, 2005, 133, 102-109.	2.3	72
8	Pannexin 1 Constitutes the Large Conductance Cation Channel of Cardiac Myocytes. Journal of Biological Chemistry, 2011, 286, 290-298.	3.4	67
9	Pannexin expression in the cerebellum. Cerebellum, 2006, 5, 189-192.	2.5	65
10	Reduced presynaptic efficiency of excitatory synaptic transmission impairs LTP in the visual cortex of BDNF-heterozygous mice. European Journal of Neuroscience, 2006, 24, 3519-3531.	2.6	58
11	Gap junctions in inherited human disease. Pflugers Archiv European Journal of Physiology, 2010, 460, 451-466.	2.8	57
12	Dual Acylation of PDE2A Splice Variant 3. Journal of Biological Chemistry, 2009, 284, 25782-25790.	3.4	54
13	Proteomic analysis of astroglial connexin43 silencing uncovers a cytoskeletal platform involved in process formation and migration. Clia, 2010, 58, 494-505.	4.9	52
14	Mechanisms of pannexin1 channel gating and regulation. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 65-71.	2.6	52
15	Internal Ribosomal Entry Site (IRES) Activity Generates Endogenous Carboxyl-terminal Domains of Cx43 and Is Responsive to Hypoxic Conditions. Journal of Biological Chemistry, 2014, 289, 20979-20990.	3.4	51
16	The potassium channel subunit $\text{Kv}\hat{l}^23$ interacts with pannexin 1 and attenuates its sensitivity to changes in redox potentials. FEBS Journal, 2009, 276, 6258-6270.	4.7	50
17	Loss of connexin36 increases retinal cell vulnerability to secondary cell loss. European Journal of Neuroscience, 2005, 22, 605-616.	2.6	49
18	Developmental regulation and overexpression of the transcription factor AP-2, a potential regulator of the timing of Schwann cell generation. European Journal of Neuroscience, 2001, 14, 363-372.	2.6	48

#	Article	IF	CITATIONS
19	Molecular Cloning and Functional Expression of zfCx52.6. Journal of Biological Chemistry, 2004, 279, 2913-2921.	3.4	48
20	Retinal horizontal cell-specific promoter activity and protein expression of zebrafish connexin 52.6 and connexin 55.5. Journal of Comparative Neurology, 2007, 501, 765-779.	1.6	48
21	Genes controlling multiple functional pathways are transcriptionally regulated in connexin43 null mouse heart. Physiological Genomics, 2005, 20, 211-223.	2.3	46
22	Calmodulin dependent protein kinase increases conductance at gap junctions formed by the neuronal gap junction protein connexin36. Brain Research, 2012, 1487, 69-77.	2.2	44
23	Gap junction modulation and its implications for heart function. Frontiers in Physiology, 2014, 5, 82.	2.8	44
24	Pannexin1 Channel Proteins in the Zebrafish Retina Have Shared and Unique Properties. PLoS ONE, 2013, 8, e77722.	2.5	41
25	Studies on the effects of altered PMP22 expression during myelination in vitro. , 1997, 48, 31-42.		39
26	Pannexin-1 channels in epilepsy. Neuroscience Letters, 2019, 695, 71-75.	2.1	36
27	Intracellular Cysteine 346 Is Essentially Involved in Regulating Panx1 Channel Activity. Journal of Biological Chemistry, 2010, 285, 38444-38452.	3.4	35
28	On the search for the electrical synapse: a glimpse at the future. Cell and Tissue Research, 2002, 310, 137-142.	2.9	32
29	Replacement of a single cysteine in the fourth transmembrane region of zebrafish pannexin1 alters hemichannel gating behavior. Experimental Brain Research, 2009, 199, 255-264.	1.5	32
30	Dexamethasone prevents LPS-induced microglial activation and astroglial impairment in an experimental bacterial meningitis co-culture model. Brain Research, 2010, 1329, 45-54.	2.2	32
31	Molecular Diversity of Connexin and Pannexin Genes in the Retina of the Zebrafish $\langle i \rangle$ Danio rerio $\langle i \rangle$. Cell Communication and Adhesion, 2008, 15, 169-183.	1.0	31
32	Single Cysteines in the Extracellular and Transmembrane Regions Modulate Pannexin 1 Channel Function. Journal of Membrane Biology, 2011, 244, 21-33.	2.1	31
33	A microfluidic device for partial immobilization, chemical exposure and behavioural screening of zebrafish larvae. Lab on A Chip, 2017, 17, 4048-4058.	6.0	25
34	ATOH8, a regulator of skeletal myogenesis in the hypaxial myotome of the trunk. Histochemistry and Cell Biology, 2014, 141, 289-300.	1.7	24
35	Investigation of olfactory function in a Panx1 knock out mouse model. Frontiers in Cellular Neuroscience, 2014, 8, 266.	3.7	23
36	Identification and Characterization of ZFP-57, a Novel Zinc Finger Transcription Factor in the Mammalian Peripheral Nervous System. Journal of Biological Chemistry, 2004, 279, 25653-25664.	3.4	21

#	Article	IF	CITATIONS
37	Structural and Functional Consequences of Connexin 36 (Cx36) Interaction with Calmodulin. Frontiers in Molecular Neuroscience, 2016, 9, 120.	2.9	21
38	Hippocampal hyperexcitability in fetal alcohol spectrum disorder: Pathological sharp waves and excitatory/inhibitory synaptic imbalance. Experimental Neurology, 2016, 280, 70-79.	4.1	21
39	Unified patch clamp protocol for the characterization of Pannexin 1 channels in isolated cells and acute brain slices. Journal of Neuroscience Methods, 2011, 199, 15-25.	2.5	20
40	Pannexin-1 Deficiency Decreases Epileptic Activity in Mice. International Journal of Molecular Sciences, 2020, 21, 7510.	4.1	19
41	Emerging functions of pannexin 1 in the eye. Frontiers in Cellular Neuroscience, 2014, 8, 263.	3.7	17
42	Identification of a Potential Regulator of the Gap Junction Protein Pannexin1. Cell Communication and Adhesion, 2005, 12, 231-236.	1.0	16
43	Phenotypic chemical and mutant screening of zebrafish larvae using an on-demand response to electric stimulation. Integrative Biology (United Kingdom), 2019, 11, 373-383.	1.3	16
44	Pannexin 1 Is Critically Involved in Feedback from Horizontal Cells to Cones. Frontiers in Molecular Neuroscience, 2017, 10, 403.	2.9	15
45	A Potential Compensatory Role of Panx3 in the VNO of a Panx1 Knock Out Mouse Model. Frontiers in Molecular Neuroscience, 2018, 11, 135.	2.9	15
46	Wnt11 Is Required for Oriented Migration of Dermogenic Progenitor Cells from the Dorsomedial Lip of the Avian Dermomyotome. PLoS ONE, 2014, 9, e92679.	2.5	14
47	A microfluidic device to study electrotaxis and dopaminergic system of zebrafish larvae. Biomicrofluidics, 2018, 12, 014113.	2.4	14
48	Tubulin-Dependent Transport of Connexin-36 Potentiates the Size and Strength of Electrical Synapses. Cells, 2019, 8, 1146.	4.1	13
49	Localization of Retinal Ca2+/Calmodulin-Dependent Kinase II- \hat{l}^2 (CaMKII- \hat{l}^2) at Bipolar Cell Gap Junctions and Cross-Reactivity of a Monoclonal Anti-CaMKII- \hat{l}^2 Antibody With Connexin36. Frontiers in Molecular Neuroscience, 2019, 12, 206.	2.9	12
50	An Energy-Efficient Optically-Enhanced Highly-Linear Implantable Wirelessly-Powered Bidirectional Optogenetic Neuro-Stimulator. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14, 1274-1286.	4.0	12
51	A new mode of SAM domain mediated oligomerization observed in the CASKIN2 neuronal scaffolding protein. Cell Communication and Signaling, 2016, 14, 17.	6.5	11
52	Endocytosis of Connexin 36 is Mediated by Interaction with Caveolin-1. International Journal of Molecular Sciences, 2020, 21, 5401.	4.1	11
53	Connexins and Cap-independent translation: Role of internal ribosome entry sites. Brain Research, 2012, 1487, 99-106.	2.2	10
54	Characterization of cytoplasmic polyadenylation element binding 2 protein expression and its RNA binding activity. Hippocampus, 2015, 25, 630-642.	1.9	10

#	Article	IF	CITATIONS
55	A microfluidic device for quantitative investigation of zebrafish larvae's rheotaxis. Biomedical Microdevices, 2017, 19, 99.	2.8	10
56	Differential expression of astrocytic connexins in a mouse model of prenatal alcohol exposure. Neurobiology of Disease, 2016, 91, 83-93.	4.4	8
57	Multi-phenotypic and bi-directional behavioral screening of zebrafish larvae. Integrative Biology (United Kingdom), 2020, 12, 211-220.	1.3	7
58	Visuomotor deficiency in panx1a knockout zebrafish is linked to dopaminergic signaling. Scientific Reports, 2020, 10, 9538.	3.3	7
59	The Roles of Calmodulin and CaMKII in Cx36 Plasticity. International Journal of Molecular Sciences, 2021, 22, 4473.	4.1	7
60	Pannexins in vision, hearing, olfaction and taste. Neuroscience Letters, 2019, 695, 32-39.	2.1	6
61	Microfluidic devices for behavioral screening of multiple Zebrafish Larvae: Design investigation process. Biotechnology Journal, 2021, , 2100076.	3.5	6
62	Panx1 channels promote both anti- and pro-seizure-like activities in the zebrafish via p2rx7 receptors and ATP signaling. Communications Biology, 2022, 5, 472.	4.4	6
63	Deletion of the \hat{l}^2 -turn/ \hat{l} ±-helix motif at the exon 2/3 boundary of human c-Myc leads to the loss of its immortalizing function. Gene, 1993, 131, 269-274.	2.2	5
64	Transcriptional and Translational Regulation of Zebrafish Connexin 55.5 (zf.Cx.55.5) and Connexin 52.6 (zf.Cx52.6). Cell Communication and Adhesion, 2003, 10, 227-231.	1.0	5
65	A Multidisciplinary Approach toward High Throughput Label-Free Cytotoxicity Monitoring of Superparamagnetic Iron Oxide Nanoparticles. Bioengineering, 2019, 6, 52.	3.5	5
66	Role of an Aromatic–Aromatic Interaction in the Assembly and Trafficking of the Zebrafish Panx1a Membrane Channel. Biomolecules, 2020, 10, 272.	4.0	4
67	Zebrafish larva's response and habituation to electric signal: Effects of voltage, current and pulsation studied in a microfluidic device. Sensors and Actuators A: Physical, 2021, 332, 113070.	4.1	4
68	Convergent NMDA receptorâ€"Pannexin1 signaling pathways regulate the interaction of CaMKII with Connexin-36. Communications Biology, 2021, 4, 702.	4.4	3
69	Gap junctional communication in health and disease. Frontiers in Physiology, 2014, 5, 442.	2.8	2
70	Panx1b Modulates the Luminance Response and Direction of Locomotion in the Zebrafish. International Journal of Molecular Sciences, 2021, 22, 11750.	4.1	2
71	Transcriptional and translational regulation of zebrafish connexin 55.5 (zf.Cx.55.5) and connexin 52.6 (zf.Cx52.6). Cell Communication and Adhesion, 2003, 10, 227-31.	1.0	1
72	Towards Label-Free Platform for Monitoring Interaction Between Cells and Superparamagnetic Iron Oxide Nanoparticles. , 2018, , .		0

#	Article	IF	CITATIONS
73	Dopaminergic signaling regulates zebrafish larvae's response to electricity. Biotechnology Journal, 2022, , 2100561.	3.5	O