Emilio QuiñoÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7737093/publications.pdf Version: 2024-02-01

ΕΜΙΙΙΟ ΟΙΙΙΑ̈́+ΟΑ̃:

#	Article	IF	CITATIONS
1	The Assignment of Absolute Configuration by NMRâ€. Chemical Reviews, 2004, 104, 17-118.	47.7	952
2	A practical guide for the assignment of the absolute configuration of alcohols, amines and carboxylic acids by NMR. Tetrahedron: Asymmetry, 2001, 12, 2915-2925.	1.8	312
3	Chitosan–PEG nanocapsules as new carriers for oral peptide delivery. Journal of Controlled Release, 2006, 111, 299-308.	9.9	289
4	Development and Brain Delivery of Chitosanâ^'PEG Nanoparticles Functionalized with the Monoclonal Antibody OX26. Bioconjugate Chemistry, 2005, 16, 1503-1511.	3.6	279
5	Supramolecular Assemblies from Poly(phenylacetylene)s. Chemical Reviews, 2016, 116, 1242-1271.	47.7	233
6	MTPA vs MPA in the Determination of the Absolute Configuration of Chiral Alcohols by1H NMR. Journal of Organic Chemistry, 1996, 61, 8569-8577.	3.2	178
7	Fijianolides, polyketide heterocycles from a marine sponge. Journal of Organic Chemistry, 1988, 53, 3642-3644.	3.2	177
8	Assignment of the Absolute Configuration of Polyfunctional Compounds by NMR Using Chiral Derivatizing Agents. Chemical Reviews, 2012, 112, 4603-4641.	47.7	175
9	Determining the Absolute Stereochemistry of Secondary/Secondary Diols by1H NMR:Â Basis and Applications. Journal of Organic Chemistry, 2005, 70, 3778-3790.	3.2	154
10	Chiral Amplification and Helicalâ€5ense Tuning by Mono―and Divalent Metals on Dynamic Helical Polymers. Angewandte Chemie - International Edition, 2011, 50, 11692-11696.	13.8	150
11	Mycothiazole, a polyketide heterocycle from a marine sponge. Journal of the American Chemical Society, 1988, 110, 4365-4368.	13.7	129
12	Optimal routine conditions for the determination of the degree of acetylation of chitosan by 1H-NMR. Carbohydrate Polymers, 2005, 61, 155-161.	10.2	119
13	Novel sponge-derived amino acids. 5. Structures, stereochemistry, and synthesis of several new heterocycles. Journal of the American Chemical Society, 1989, 111, 647-654.	13.7	117
14	Phenolic constituents of. Tetrahedron Letters, 1987, 28, 3229-3232.	1.4	116
15	Conformational Structure and Dynamics of Arylmethoxyacetates: DNMR Spectroscopy and Aromatic Shielding Effect. Journal of Organic Chemistry, 1995, 60, 504-515.	3.2	115
16	Controlled modulation of the helical sense and the elongation of poly(phenylacetylene)s by polar and donor effects. Chemical Science, 2013, 4, 2735.	7.4	111
17	Bengamides, heterocyclic anthelmintics from a Jaspidae marine sponge. Journal of Organic Chemistry, 1986, 51, 4494-4497.	3.2	105
18	Are Both the (R)-and the (S)-MPA Esters Really Needed for the Assignment of the Absolute Configuration of Secondary Alcohols by NMR? The Use of a Single Derivative. Journal of the American Chemical Society, 1998, 120, 877-882.	13.7	100

#	Article	IF	CITATIONS
19	Nanospheres with Tunable Size and Chirality from Helical Polymer–Metal Complexes. Journal of the American Chemical Society, 2012, 134, 19374-19383.	13.7	99
20	Novel sponge-derived amino acids. 12. Tryptophan-derived pigments and accompanying sesterterpenes from Fascaplysinopsis reticulata. Journal of Organic Chemistry, 1991, 56, 3403-3410.	3.2	98
21	The structures and stereochemistry of cytotoxic sesquiterpene quinones from dactylospongia elegans. Tetrahedron, 1992, 48, 6667-6680.	1.9	94
22	Novel sponge-derived amino acids. 11. The entire absolute stereochemistry of the bengamides. Journal of Organic Chemistry, 1990, 55, 240-242.	3.2	93
23	Architecture of Chiral Poly(phenylacetylene)s: From Compressed/Highly Dynamic to Stretched/Quasi-Static Helices. Journal of the American Chemical Society, 2016, 138, 9620-9628.	13.7	93
24	Unusual anthelminthic oxazoles from a marine sponge. Journal of the American Chemical Society, 1988, 110, 1598-1602.	13.7	91
25	Control of the Helicity of Poly(phenylacetylene)s: From the Conformation of the Pendant to the Chirality of the Backbone. Angewandte Chemie - International Edition, 2010, 49, 1430-1433.	13.8	85
26	Three-State Switchable Chiral Stationary Phase Based on Helicity Control of an Optically Active Poly(phenylacetylene) Derivative by Using Metal Cations in the Solid State. Journal of the American Chemical Society, 2019, 141, 8592-8598.	13.7	82
27	A General Methodology for Automated Solid-Phase Synthesis of Depsides and Depsipeptides. Preparation of a Valinomycin Analogueâ€. Journal of Organic Chemistry, 1999, 64, 8063-8075.	3.2	72
28	The assignment of absolute configurations by NMR of arylmethoxyacetate derivatives: is this methodology being correctly used?. Tetrahedron: Asymmetry, 2000, 11, 2781-2791.	1.8	72
29	The ON/OFF switching by metal ions of the "Sergeants and Soldiers―chiral amplification effect on helical poly(phenylacetylene)s. Chemical Science, 2014, 5, 2170-2176.	7.4	71
30	Choosing the Right Reagent for the Determination of the Absolute Configuration of Amines by NMR:Â MTPA or MPA?â€. Journal of Organic Chemistry, 1997, 62, 7569-7574.	3.2	70
31	New chirality recognizing reagents for the determination of absolute stereochemistry and enantiomeric purity by NMR. Tetrahedron Letters, 1994, 35, 2921-2924.	1.4	68
32	Nanospheres, Nanotubes, Toroids, and Gels with Controlled Macroscopic Chirality. Angewandte Chemie - International Edition, 2014, 53, 13720-13724.	13.8	66
33	Determination of the Absolute Stereochemistry of Chiral Amines by 1H NMR of Arylmethoxyacetic Acid Amides: The Conformational Model. Journal of Organic Chemistry, 1995, 60, 1538-1545.	3.2	61
34	Absolute Configuration of Secondary Alcohols by 1H NMR:  In Situ Complexation of α-Methoxyphenylacetic Acid Esters with Barium(II). Journal of Organic Chemistry, 2002, 67, 4579-4589.	3.2	61
35	Boc-Phenylglycine: The Reagent of Choice for the Assignment of the Absolute Configuration of α-Chiral Primary Amines by1H NMR Spectroscopy. Journal of Organic Chemistry, 1999, 64, 4669-4675.	3.2	59
36	Antiplasmodial Metabolites Isolated from the Marine OctocoralMuricea austera. Journal of Natural Products, 2006, 69, 1379-1383.	3.0	59

#	Article	IF	CITATIONS
37	Conjugation of Bioactive Ligands to PEC-Grafted Chitosan at the Distal End of PEG. Biomacromolecules, 2007, 8, 833-842.	5.4	59
38	A Stimuliâ€Responsive Macromolecular Gear: Interlocking Dynamic Helical Polymers with Foldamers. Angewandte Chemie - International Edition, 2020, 59, 8616-8622.	13.8	59
39	Niphatynes, methoxylamine pyridines from the marine sponge, niphates SP Tetrahedron Letters, 1987, 28, 2467-2468.	1.4	56
40	Assignment of the Absolute Configuration of β-Chiral Primary Alcohols by NMR: Scope and Limitations. Journal of the American Chemical Society, 1998, 120, 4741-4751.	13.7	56
41	Absolute Configuration of 1,n-Diols by NMR:  The Importance of the Combined Anisotropic Effects in Bis-Arylmethoxyacetates. Organic Letters, 2000, 2, 3261-3264.	4.6	55
42	The leading role of cation–π interactions in polymer chemistry: the control of the helical sense in solution. Polymer Chemistry, 2015, 6, 4725-4733.	3.9	55
43	Assignment of the Absolute Configuration of α-Chiral Carboxylic Acids by1H NMR Spectroscopy. Journal of Organic Chemistry, 2000, 65, 2658-2666.	3.2	54
44	Onchidin B:  A New Cyclodepsipeptide from the Mollusc Onchidium sp Journal of the American Chemical Society, 1996, 118, 11635-11643.	13.7	52
45	Heterocycles from the marine sponge Xestospongia sp. Journal of Organic Chemistry, 1986, 51, 4260-4264.	3.2	51
46	"Mix and Shake―Method for Configurational Assignment by NMR:  Application to Chiral Amines and Alcohols. Organic Letters, 2003, 5, 2979-2982.	4.6	51
47	Monitoring the solid-phase synthesis of depsides and depsipeptides. A color test for hydroxyl groups linked to a resin Tetrahedron, 1999, 55, 14807-14812.	1.9	50
48	Onchidin: a cytotoxic depsipeptide with C2 symmetry from a marine mollusc. Tetrahedron Letters, 1994, 35, 9239-9242.	1.4	49
49	Resin-Bound Chiral Derivatizing Agents for Assignment of Configuration by NMR Spectroscopy. Journal of Organic Chemistry, 2008, 73, 5714-5722.	3.2	49
50	Determining factors in the assignment of the absolute configuration of alcohols by NMR. The use of anisotropic effects on remote positions. Tetrahedron, 1997, 53, 8541-8564.	1.9	48
51	Chiral-to-Chiral Communication in Polymers: A Unique Approach To Control Both Helical Sense and Chirality at the Periphery. Journal of the American Chemical Society, 2018, 140, 12239-12246.	13.7	47
52	Chiral Conflict as a Method to Create Stimuliâ€Responsive Materials Based on Dynamic Helical Polymers. Angewandte Chemie - International Edition, 2019, 58, 13365-13369.	13.8	45
53	Complexation with Barium(II) Allows the Inference of the Absolute Configuration of Primary Amines by NMR. Journal of the American Chemical Society, 1999, 121, 9724-9725.	13.7	44
54	Leptolide, a New Furanocembranolide Diterpene fromLeptogorgiaalba. Journal of Natural Products, 2005, 68, 614-616.	3.0	44

#	Article	IF	CITATIONS
55	Predicting the Helical Sense of Poly(phenylacetylene)s from their Electron Circular Dichroism Spectra. Angewandte Chemie - International Edition, 2018, 57, 3666-3670.	13.8	44
56	9-Anthrylmethoxyacetic acid esterification shifts—Correlation with the absolute stereochemistry of secondary alcohols. Tetrahedron, 1999, 55, 569-584.	1.9	43
57	Chiral Nanostructures from Helical Copolymer-Metal Complexes: Tunable Cation-Ï€ Interactions and Sergeants and Soldiers Effect. Small, 2016, 12, 238-244.	10.0	43
58	Reversible assembly of enantiomeric helical polymers: from fibers to gels. Chemical Science, 2015, 6, 246-253.	7.4	42
59	Determination of the absolute configuration of alcohols by low temperature 1H NMR of aryl(methoxy)acetates. Tetrahedron: Asymmetry, 1995, 6, 107-110.	1.8	41
60	13C NMR as a general tool for the assignment of absolute configuration. Chemical Communications, 2010, 46, 7903.	4.1	41
61	Euryspongiols: Ten new highly hydroxylated 9,11-secosteroids with antihistaminic activity from the sponge euryspongia sp. Stereochemistry and reduction Tetrahedron, 1994, 50, 3813-3828.	1.9	40
62	In tube determination of the absolute configuration of α- and β-hydroxy acids by NMR via chiral BINOL borates. Chemical Communications, 2008, , 4147.	4.1	40
63	Poly(phenylacetylene) Amines: A General Route to Water-Soluble Helical Polyamines. Chemistry of Materials, 2018, 30, 6908-6914.	6.7	40
64	The Prediction of the Absolute Stereochemistry of Primary and Secondary 1,2-Diols by1H NMR Spectroscopy: Principles and Applications. Chemistry - A European Journal, 2005, 11, 5509-5522.	3.3	39
65	Role of Barium(II) in the Determination of the Absolute Configuration of Chiral Amines by1H NMR Spectroscopy. Journal of Organic Chemistry, 2006, 71, 1119-1130.	3.2	39
66	Multistate Chiroptical Switch Triggered by Stimuli-Responsive Chiral Teleinduction. Chemistry of Materials, 2018, 30, 2493-2497.	6.7	39
67	Chiral Coalition in Helical Sense Enhancement of Copolymers: The Role of the Absolute Configuration of Comonomers. Journal of the American Chemical Society, 2018, 140, 667-674.	13.7	39
68	Chiral Overpass Induction in Dynamic Helical Polymers Bearing Pendant Groups with Two Chiral Centers. Angewandte Chemie - International Edition, 2020, 59, 4537-4543.	13.8	39
69	The Occurrence of the Human GlycoconjugateC2-α-d-Mannosylpyranosyl-l-tryptophan in Marine Ascidians. Organic Letters, 2000, 2, 2765-2767.	4.6	38
70	Chiral 1,2-Diols: The Assignment of Their Absolute Configuration by NMR Made Easy. Organic Letters, 2010, 12, 208-211.	4.6	36
71	A general route to chiral nanostructures from helical polymers: P/M switch via dynamic metal coordination. Polymer Chemistry, 2017, 8, 3740-3745.	3.9	36
72	The role of the secondary structure of helical poly(phenylacetylene)s in the formation of nanoparticles from polymer–metal complexes (HPMCs). Nanoscale, 2017, 9, 17752-17757.	5.6	35

#	Article	IF	CITATIONS
73	Helical sense selective domains and enantiomeric superhelices generated by Langmuir–Schaefer deposition of an axially racemic chiral helical polymer. Nanoscale, 2016, 8, 3362-3367.	5.6	34
74	New Amino Acid Derivatives from the Marine Ascidian Leptoclinides dubius. Journal of Natural Products, 1996, 59, 782-785.	3.0	32
75	Decoding the ECD Spectra of Poly(phenylacetylene)s: Structural Significance. ACS Omega, 2019, 4, 5233-5240.	3.5	32
76	Novel marine sponge alkaloids 3. β-carbolinium salts from Fascaplysinopsis reticulata. Tetrahedron Letters, 1991, 32, 1843-1846.	1.4	31
77	Challenging the absence of observable hydrogens in the assignment of absolute configurations by NMR: application to chiral primary alcohols. Chemical Communications, 2007, , 1456-1458.	4.1	31
78	The Competitive Aggregation Pathway of an Asymmetric Chiral Oligo(<i>p</i> â€phenyleneethynylene) Towards the Formation of Individual <i>P</i> and <i>M</i> Supramolecular Helical Polymers. Angewandte Chemie - International Edition, 2021, 60, 9919-9924.	13.8	31
79	Melynes, polyacetylene constituents from a vanuatu marine sponge. Tetrahedron Letters, 1988, 29, 2037-2040.	1.4	30
80	Multipodal dynamic coordination involving cationâ€"ï€ interactions to control the structure of helical polymers. Chemical Communications, 2017, 53, 8573-8576.	4.1	30
81	Simultaneous enantioresolution and assignment of absolute configuration of secondary alcohols by directly coupled HPLC–NMR of 9-AMA esters. Tetrahedron: Asymmetry, 2002, 13, 2149-2153.	1.8	29
82	The Assignment of the Absolute Configuration of 1,2-Diols by Low-Temperature NMR of a Single MPA Derivative. Organic Letters, 2005, 7, 4855-4858.	4.6	28
83	Chiral Thiols:  The Assignment of Their Absolute Configuration by 1H NMR. Organic Letters, 2007, 9, 5015-5018.	4.6	28
84	Sequential Induction of Chirality in Helical Polymers: From the Stereocenter to the Achiral Solvent. Journal of Physical Chemistry Letters, 2018, 9, 2266-2270.	4.6	28
85	Chiral information harvesting in helical poly(acetylene) derivatives using oligo(<i>p</i> -phenyleneethynylene)s as spacers. Chemical Science, 2020, 11, 7182-7187.	7.4	28
86	Epidioxy Sterols from the Tunicates Dendrodoa grossularia and Ascidiella aspersa and the Gastropoda Aplysia depilans and Aplysia punctata. Journal of Natural Products, 1986, 49, 905-909.	3.0	26
87	Determination of the absolute configuration and enantiomeric purity of chiral primary alcohols by 1H NMR of 9-anthrylmethoxyacetates. Tetrahedron: Asymmetry, 1996, 7, 2195-2198.	1.8	26
88	Studies on the interaction between 1,2,3,4-tetrahydro-Î ² -carboline and cigarette smoke: a potential mechanism of neuroprotection for Parkinson's disease. Brain Research, 1998, 802, 155-162.	2.2	26
89	Minalemines A-F: Sulfamic acid peptide guanidine derivatives isolated from the marine tunicate Didemnun rodriguesi. Tetrahedron, 1998, 54, 7539-7550.	1.9	26
90	Boc–phenylglycine: a chiral solvating agent for the assignment of the absolute configuration of amino alcohols and their ethers by NMR. Tetrahedron: Asymmetry, 2004, 15, 1825-1829.	1.8	26

#	Article	IF	CITATIONS
91	Simultaneous Adjustment of Size and Helical Sense of Chiral Nanospheres and Nanotubes Derived from an Axially Racemic Poly(phenylacetylene). Small, 2017, 13, 1602398.	10.0	26
92	From Sergeants and Soldiers to Chiral Conflict Effects in Helical Polymers by Acting on the Conformational Composition of the Comonomers. Angewandte Chemie - International Edition, 2020, 59, 23724-23730.	13.8	26
93	l-Galactose as a natural product: isolation from a marine octocoral of the first α-l-galactosyl saponin. Tetrahedron Letters, 2004, 45, 7833-7836.	1.4	25
94	Relative and Absolute Stereochemistry of Secondary/Secondary Diols:Â Low-Temperature1H NMR of Their bis-MPA Esters§. Journal of Organic Chemistry, 2007, 72, 2297-2301.	3.2	25
95	Macromolecular helicity control of poly(phenyl isocyanate)s with a single stimuli-responsive chiral switch. Chemical Communications, 2019, 55, 7906-7909.	4.1	25
96	Merging Supramolecular and Covalent Helical Polymers: Four Helices Within a Single Scaffold. Journal of the American Chemical Society, 2021, 143, 20962-20969.	13.7	25
97	The1H NMR Method for the Determination of the Absolute Configuration of 1,2,3-prim,sec,sec-Triols‡. Organic Letters, 2006, 8, 4449-4452.	4.6	24
98	Assigning the Configuration of Amino Alcohols by NMR: A Single Derivatization Method. Organic Letters, 2008, 10, 2733-2736.	4.6	24
99	The [4 + 2] Addition of Singlet Oxygen to Thebaine:Â New Access to Highly Functionalized Morphine Derivatives via Opioid Endoperoxides. Journal of Organic Chemistry, 2000, 65, 4671-4678.	3.2	23
100	The use of ethyl 2-(9-anthryl)-2-hydroxyacetate for assignment of the absolute configuration of carboxylic acids by 1H NMR. Tetrahedron: Asymmetry, 1997, 8, 1015-1018.	1.8	22
101	Cross Interaction Between Auxiliaries: The Chirality of Amino Alcohols by NMR. Organic Letters, 2008, 10, 2729-2732.	4.6	22
102	Absolute Configuration of Ketone Cyanohydrins by 1H NMR: The Special Case of Polar Substituted Tertiary Alcohols. Organic Letters, 2009, 11, 53-56.	4.6	22
103	Stimuliâ€Directed Colorimetric Interconversion of Helical Polymers Accompanied by a Tunable Selfâ€Assembly Process. Small, 2019, 15, 1805413.	10.0	22
104	Raman Optical Activity (ROA) as a New Tool to Elucidate the Helical Structure of Poly(phenylacetylene)s. Angewandte Chemie - International Edition, 2020, 59, 9080-9087.	13.8	22
105	Polymeric Helical Structures à la Carte by Rational Design of Monomers. Macromolecules, 2020, 53, 3182-3193.	4.8	22
106	Santiagoside, the first asterosaponin from an antarctic starfish (Neosmilaster georgianus) Tetrahedron, 1992, 48, 6739-6746.	1.9	21
107	Dactyltronic Acids from the Sponge Dactylospongia elegans. Journal of Natural Products, 1994, 57, 992-996.	3.0	20
108	Helical Polymer–Metal Complexes: The Role of Metal Ions on the Helicity and the Supramolecular Architecture of Poly(phenylacetylene)s. Advances in Polymer Science, 2013, 123-140	0.8	20

#	Article	IF	CITATIONS
109	Chiral Conflict as a Method to Create Stimuliâ€Responsive Materials Based on Dynamic Helical Polymers. Angewandte Chemie, 2019, 131, 13499-13503.	2.0	20
110	A Stimuliâ€Responsive Macromolecular Gear: Interlocking Dynamic Helical Polymers with Foldamers. Angewandte Chemie, 2020, 132, 8694-8700.	2.0	20
111	Absolute configuration of amino alcohols by 1H-NMR. Chemical Communications, 2005, , 5554.	4.1	19
112	The assignment of absolute configuration of cyanohydrins by NMR. Chemical Communications, 2006, , 1422.	4.1	19
113	The Stereochemistry of 1,2,3â€Triols Revealed by ¹ Hâ€NMR Spectroscopy: Principles and Applications. Chemistry - A European Journal, 2009, 15, 11963-11975.	3.3	19
114	Photochemical Electrocyclization of Poly(phenylacetylene)s: Unwinding Helices to Elucidate their 3D Structure in Solution. Angewandte Chemie - International Edition, 2021, 60, 8095-8103.	13.8	19
115	Solid phase synthesis of depsides and depsipeptides. Tetrahedron Letters, 1999, 40, 1203-1206.	1.4	18
116	Dynamic Chiral PPA–AgNP Nanocomposites: Aligned Silver Nanoparticles Decorating Helical Polymers. Chemistry of Materials, 2021, 33, 4805-4812.	6.7	18
117	Dissymmetric Chiral Poly(diphenylacetylene)s: Secondary Structure Elucidation and Dynamic Luminescence. Angewandte Chemie - International Edition, 2022, , .	13.8	18
118	Designing chiral derivatizing agents (CDA) for the NMR assignment of the absolute configuration: a theoretical and experimental approach with thiols as a case study. Tetrahedron, 2014, 70, 3276-3283.	1.9	17
119	Chiral gold–PPA nanocomposites with tunable helical sense and morphology. Nanoscale Horizons, 2020, 5, 495-500.	8.0	17
120	Predicting the Helical Sense of Poly(phenylacetylene)s from their Electron Circular Dichroism Spectra. Angewandte Chemie, 2018, 130, 3728-3732.	2.0	16
121	Tuning the helical sense and elongation of polymers through the combined action of the two components of tetraalkylammonium-anion salts. Giant, 2021, 7, 100068.	5.1	16
122	The unusual presence of hydroxylated furanosesquiterpenes in the deep ocean tunicate Ritterella rete. Chemical interconversions and absolute stereochemistry. Tetrahedron, 1998, 54, 5385-5406.	1.9	15
123	Halogenated Monoterpenes from Plocamium coccineum of Northwest Spain. Journal of Natural Products, 1984, 47, 724-726.	3.0	14
124	The Dietary Origin of Epidioxysteroids in Actinia equina. A Carbon-14 Incorporation Experiment. Journal of Natural Products, 1989, 52, 619-622.	3.0	14
125	Chiral Overpass Induction in Dynamic Helical Polymers Bearing Pendant Groups with Two Chiral Centers. Angewandte Chemie, 2020, 132, 4567-4573.	2.0	13
126	Raman Optical Activity (ROA) as a New Tool to Elucidate the Helical Structure of Poly(phenylacetylene)s. Angewandte Chemie, 2020, 132, 9165-9172.	2.0	13

#	Article	IF	CITATIONS
127	Photooxidation of thebaine. A route to 14-hydroxymorphinones and hydrodibenzofuran analogs of methadone. Tetrahedron Letters, 1994, 35, 5727-5730.	1.4	11
128	The halogenated monoterpenes of Aplysia punctata. A comparative study. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1989, 92, 99-101.	0.2	10
129	Helianthoside from Heliaster helianthus, an asterosaponin with a C3′-sulphated pyranose. Canadian Journal of Chemistry, 1993, 71, 1147-1151.	1.1	10
130	Antiprotozoal Activity AgainstPlasmodium falciparum. andTrypanosoma cruzi. of Aeroplysinin-1 Isolated from the New SpongeAplysina chiriquensis Pharmaceutical Biology, 2005, 43, 762-765.	2.9	10
131	Helical Colorimetric Sensors: Stimuliâ€Directed Colorimetric Interconversion of Helical Polymers Accompanied by a Tunable Selfâ€Assembly Process (Small 13/2019). Small, 2019, 15, 1970070.	10.0	10
132	Hierarchical Self-Assembly and Multidynamic Responsiveness of Fluorescent Dynamic Covalent Networks Forming Organogels. Biomacromolecules, 2022, 23, 431-442.	5.4	10
133	Hierarchical self-assembly of aromatic peptide conjugates into supramolecular polymers: it takes two to tango. Chemical Science, 2022, 13, 909-933.	7.4	9
134	Using a Combination of Magnetic Anisotropic Effects for the Configurational Assignment of Amino Alcohols. Chemistry - an Asian Journal, 2010, 5, 2106-2112.	3.3	8
135	Photochemical Electrocyclization of Poly(phenylacetylene)s: Unwinding Helices to Elucidate their 3D Structure in Solution. Angewandte Chemie, 2021, 133, 8176-8184.	2.0	8
136	Photostability and Dynamic Helical Behavior in Chiral Poly(phenylacetylene)s with a Preferred Screw‣ense. Angewandte Chemie - International Edition, 0, , .	13.8	8
137	Antarctic Marine Metabolites: New Polyhydroxylated Steroidal Glycosides from the Starfish <i>Odontaster validus</i> . Liebigs Annalen Der Chemie, 1993, 1993, 1257-1262.	0.8	7
138	The Use of a Single Derivative in the Configurational Assignment of Ketone Cyanohydrins. European Journal of Organic Chemistry, 2010, 2010, 6520-6524.	2.4	7
139	STRUCTURAL ELUCIDATION OF MARINE HALOGENATED MONOTERPENES BY 2D-NMR AND NOE DIFFERENCE SPECTROSCOPY. A STEREOCHEMICAL CORRECTION. Chemistry Letters, 1985, 14, 697-700.	1.3	6
140	From Sergeants and Soldiers to Chiral Conflict Effects in Helical Polymers by Acting on the Conformational Composition of the Comonomers. Angewandte Chemie, 2020, 132, 23932-23938.	2.0	6
141	Dissymmetric Chiral Poly(diphenylacetylene)s: Secondary Structure Elucidation and Dynamic Luminescence. Angewandte Chemie, 2022, 134, .	2.0	5
142	Complete structural analysis of cyclic polyhalogenated monoterpenes. A force field 2-dimensional NMR study. Journal of Organic Chemistry, 1986, 51, 4970-4973.	3.2	4
143	Incorrect procedure for the assignment of the absolute configuration of carbonucleosides by NMR: MPA must not be used with primary alcohols. Tetrahedron: Asymmetry, 2002, 13, 919-921.	1.8	4
144	The Role of Polymer–AuNP Interaction in the Stimuliâ€Response Properties of PPA–AuNP Nanocomposites. Macromolecular Rapid Communications, 2022, 43, e2100616.	3.9	4

#	Article	IF	CITATIONS
145	Deoxygenation of 1,4-endoperoxides to 1,3-dienes by low-valent titanium. Journal of the Chemical Society Chemical Communications, 1984, .	2.0	3
146	The conformation of aldisin and analogues. A potential model for expanded nucleosides. Tetrahedron, 1995, 51, 1301-1310.	1.9	3
147	From Oligo(Phenyleneethynylene) Monomers to Supramolecular Helices: The Role of Intermolecular Interactions in Aggregation. Molecules, 2021, 26, 3530.	3.8	2
148	Photostability and Dynamic Helical Behavior in Chiral Poly(phenylacetylene)s with a Preferred Screwâ€ s ense. Angewandte Chemie, 2022, 134, .	2.0	2
149	The Assignment of Absolute Configuration by NMR. ChemInform, 2004, 35, no.	0.0	0
150	The Assignment of the Absolute Configuration of 1,2-Diols by Low-Temperature NMR of a Single MPA Derivative ChemInform, 2006, 37, no.	0.0	0
151	Enantiomeric Nanostructures: Chiral Nanostructures from Helical Copolymer-Metal Complexes: Tunable Cation-ï€ Interactions and Sergeants and Soldiers Effect (Small 2/2016). Small, 2016, 12, 237-237.	10.0	Ο