
Susannah L Scott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7736749/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evidence for Entropically Controlled Interfacial Hydration in Mesoporous Organosilicas. Journal of the American Chemical Society, 2022, 144, 1766-1777.	13.7	20
2	To Err is Human; To Reproduce Takes Time. ACS Catalysis, 2022, 12, 3644-3650.	11.2	16
3	Modeling the Structural Heterogeneity of Vicinal Silanols and Its Effects on TiCl ₄ Grafting onto Amorphous Silica. Chemistry of Materials, 2022, 34, 3920-3930.	6.7	4
4	Efficient, continuous <i>N</i> Boc deprotection of amines using solid acid catalysts. Reaction Chemistry and Engineering, 2021, 6, 279-288.	3.7	6
5	P-Site Structural Diversity and Evolution in a Zeosil Catalyst. Journal of the American Chemical Society, 2021, 143, 1968-1983.	13.7	17
6	Bioinspired methane oxidation in a zeolite. Science, 2021, 373, 277-278.	12.6	7
7	Chemical Upcycling of Polyethylene to Value-Added α,ï‰-Divinyl-Functionalized Oligomers. ACS Sustainable Chemistry and Engineering, 2021, 9, 13926-13936.	6.7	34
8	X-ray Absorption Spectroscopy Investigation into the Origins of Heterogeneity in Silica-Supported Dioxomonomolybdates. Journal of Physical Chemistry C, 2021, 125, 23115-23125.	3.1	3
9	First-Principles Approach to Extracting Chemical Information from X-ray Absorption Near-Edge Spectra of Ga-Containing Materials. Journal of Physical Chemistry C, 2021, 125, 27901-27908.	3.1	5
10	Site-averaged kinetics for catalysts on amorphous supports: an importance learning algorithm. Reaction Chemistry and Engineering, 2020, 5, 77-86.	3.7	25
11	Structure-performance correlations of cross-linked boronic acid polymers as adsorbents for recovery of fructose from glucose–fructose mixtures. Green Chemistry, 2020, 22, 550-562.	9.0	16
12	Grafting metal complexes onto amorphous supports: from elementary steps to catalyst site populations <i>via</i> kernel regression. Reaction Chemistry and Engineering, 2020, 5, 66-76.	3.7	22
13	Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization. Science, 2020, 370, 437-441.	12.6	378
14	Degradation Rates of Plastics in the Environment. ACS Sustainable Chemistry and Engineering, 2020, 8, 3494-3511.	6.7	1,463
15	Nano-Apples and Orange-Zymes. ACS Catalysis, 2020, 10, 14315-14317.	11.2	33
16	Phosphonateâ€Modified UiOâ€66 BrÃ,nsted Acid Catalyst and Its Use in Dehydraâ€Đecyclization of 2â€Methyltetrahydrofuran to Pentadienes. Angewandte Chemie - International Edition, 2020, 59, 13260-13266.	13.8	21
17	Phosphonateâ€Modified UiOâ€66 BrÃ,nsted Acid Catalyst and Its Use in Dehydraâ€Đecyclization of 2â€Methyltetrahydrofuran to Pentadienes. Angewandte Chemie, 2020, 132, 13362-13368.	2.0	4
18	Excellence <i>versus</i> Diversity? Not an Either/Or Choice. ACS Catalysis, 2020, 10, 7310-7311.	11.2	4

#	Article	IF	CITATIONS
19	Tuning molecular adsorption in SBA-15-type periodic mesoporous organosilicas by systematic variation of their surface polarity. Chemical Science, 2020, 11, 3702-3712.	7.4	10
20	Direct, Selective Production of Aromatic Alcohols from Ethanol Using a Tailored Bifunctional Cobalt–Hydroxyapatite Catalyst. ACS Catalysis, 2019, 9, 7204-7216.	11.2	49
21	Upcycling Single-Use Polyethylene into High-Quality Liquid Products. ACS Central Science, 2019, 5, 1795-1803.	11.3	283
22	Unraveling the Dynamic Network in the Reactions of an Alkyl Aryl Ether Catalyzed by Ni/γ-Al ₂ O ₃ in 2-Propanol. Journal of the American Chemical Society, 2019, 141, 17370-17381.	13.7	23
23	Synthesis and Characterization of "Atlas-Sphere―Copper Nanoclusters: New Insights into the Reaction of Cu ²⁺ with Thiols. Inorganic Chemistry, 2019, 58, 8739-8749.	4.0	17
24	The Burden of <i>Dis</i> proof. ACS Catalysis, 2019, 9, 4706-4708.	11.2	38
25	Glucose Isomerization and Epimerization over Metalâ€Organic Frameworks with Singleâ€Site Active Centers. ChemCatChem, 2019, 11, 1903-1909.	3.7	21
26	High temperature/pressure MAS-NMR for the study of dynamic processes in mixed phase systems. Magnetic Resonance Imaging, 2019, 56, 37-44.	1.8	20
27	Essential Elements of Collaboration: Understanding How Chemistry Graduate Students Experience Collaboration through International Research Visits. Journal of Chemical Education, 2018, 95, 749-757.	2.3	7
28	Reassessment of the Electronic Structure of Cr(VI) Sites Supported on Amorphous Silica and Implications for Cr Coordination Number. Journal of Physical Chemistry C, 2018, 122, 4349-4358.	3.1	20
29	<i>Operando</i> MAS NMR Reaction Studies at High Temperatures and Pressures. Journal of Physical Chemistry C, 2018, 122, 8209-8215.	3.1	52
30	Computational Support for Phillips Catalyst Initiation via Cr–C Bond Homolysis in a Chromacyclopentane Site. ACS Catalysis, 2018, 8, 1728-1733.	11.2	23
31	Elucidating the Roles of Electric Fields in Catalysis: A Perspective. ACS Catalysis, 2018, 8, 5153-5174.	11.2	215
32	An Organometallic Cu ₂₀ Nanocluster: Synthesis, Characterization, Immobilization on Silica, and "Click―Chemistry. Journal of the American Chemical Society, 2018, 140, 394-400.	13.7	136
33	Enhanced Metathesis Activity and Stability of Methyltrioxorhenium on a Mostly Amorphous Alumina: Role of the Local Grafting Environment. Journal of the American Chemical Society, 2018, 140, 13854-13868.	13.7	24
34	Do Mono-oxo Sites Exist in Silica-Supported Cr(VI) Materials? Reassessment of the Resonance Raman Spectra. Journal of Physical Chemistry C, 2018, 122, 17149-17160.	3.1	8
35	A Strong Support Effect in Selective Propane Dehydrogenation Catalyzed by Ga(<i>i</i> Bu) ₃ Grafted onto γ-Alumina and Silica. ACS Catalysis, 2018, 8, 7566-7577.	11.2	79
36	A Matter of Life(time) and Death. ACS Catalysis, 2018, 8, 8597-8599.	11.2	162

3

#	Article	IF	CITATIONS
37	Superlative Scientific Writing. ACS Catalysis, 2017, 7, 2218-2219.	11.2	18
38	Operando Solid-State NMR Observation of Solvent-Mediated Adsorption-Reaction of Carbohydrates in Zeolites. ACS Catalysis, 2017, 7, 3489-3500.	11.2	70
39	Beyond Ordered Materials: Understanding Catalytic Sites on Amorphous Solids. ACS Catalysis, 2017, 7, 7543-7557.	11.2	134
40	Mechanism of Initiation in the Phillips Ethylene Polymerization Catalyst: Ethylene Activation by Cr(II) and the Structure of the Resulting Active Site. ACS Catalysis, 2017, 7, 7442-7455.	11.2	34
41	Ligand Exchange-Mediated Activation and Stabilization of a Re-Based Olefin Metathesis Catalyst by Chlorinated Alumina. Journal of the American Chemical Society, 2016, 138, 12935-12947.	13.7	37
42	One-Electron-Redox Activation of the Reduced Phillips Polymerization Catalyst, via Alkylchromium(IV) Homolysis: A Computational Assessment. ACS Catalysis, 2016, 6, 6073-6085.	11.2	47
43	Ligand-Exchange-Induced Growth of an Atomically Precise Cu ₂₉ Nanocluster from a Smaller Cluster. Chemistry of Materials, 2016, 28, 8385-8390.	6.7	101
44	Phenomena Affecting Catalytic Reactions at Solid–Liquid Interfaces. ACS Catalysis, 2016, 6, 8286-8307.	11.2	189
45	Rapid extraction of quantitative kinetic information from variable-temperature reaction profiles. Chemical Engineering Journal, 2016, 303, 182-193.	12.7	7
46	Mapping reactivities of aromatic models with a lignin disassembly catalyst. Steps toward controlling product selectivity. Catalysis Science and Technology, 2016, 6, 2984-2994.	4.1	42
47	Toward Benchmarking in Catalysis Science: Best Practices, Challenges, and Opportunities. ACS Catalysis, 2016, 6, 2590-2602.	11.2	190
48	Reexamining the evidence for proton transfers in ethylene polymerization. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4160-1.	7.1	29
49	Rate-Enhancing Roles of Water Molecules in Methyltrioxorhenium-Catalyzed Olefin Epoxidation by Hydrogen Peroxide. Journal of the American Chemical Society, 2015, 137, 9604-9616.	13.7	42
50	Computational Kinetic Discrimination of Ethylene Polymerization Mechanisms for the Phillips (Cr/SiO ₂) Catalyst. ACS Catalysis, 2015, 5, 3360-3374.	11.2	69
51	A Cu ₂₅ Nanocluster with Partial Cu(0) Character. Journal of the American Chemical Society, 2015, 137, 13319-13324.	13.7	234
52	Selective Grafting of Ga(<i>i-</i> Bu) ₃ on the Silanols of Mesoporous H-ZSM-5 by Surface Organometallic Chemistry. Journal of Physical Chemistry C, 2015, 119, 26611-26619.	3.1	27
53	Single atom catalysts on amorphous supports: A quenched disorder perspective. Journal of Chemical Physics, 2015, 142, 104708.	3.0	53
54	Mechanism of Initiation in the Phillips Ethylene Polymerization Catalyst: Redox Processes Leading to the Active Site. ACS Catalysis, 2015, 5, 5574-5583.	11.2	57

Susannah L Scott

#	Article	IF	CITATIONS
55	Ir–Re alloy as a highly active catalyst for the hydrogenolysis of glycerol to 1,3-propanediol. Catalysis Science and Technology, 2015, 5, 1540-1547.	4.1	71
56	Chromium Catalysts for Ethylene Polymerization and Oligomerization. Advances in Chemical Engineering, 2014, , 127-191.	0.9	13
57	Tandem Catalytic Conversion of Glucose to 5-Hydroxymethylfurfural with an Immobilized Enzyme and a Solid Acid. ACS Catalysis, 2014, 4, 2165-2168.	11.2	102
58	Water-Catalyzed Activation of H ₂ O ₂ by Methyltrioxorhenium: A Combined Computational–Experimental Study. Inorganic Chemistry, 2013, 52, 13904-13917.	4.0	20
59	Amine Catalyzed Atomic Layer Deposition of (3-Mercaptopropyl)trimethoxysilane for the Production of Heterogeneous Sulfonic Acid Catalysts. Chemistry of Materials, 2013, 25, 3844-3851.	6.7	16
60	Phillips Cr/Silica Catalyst for Ethylene Polymerization. Advances in Polymer Science, 2013, , 135-202.	0.8	32
61	Sustainable Solvent Systems for Use in Tandem Carbohydrate Dehydration Hydrogenation. ACS Sustainable Chemistry and Engineering, 2013, 1, 554-560.	6.7	73
62	Recent progress in methane dehydroaromatization: From laboratory curiosities to promising technology. Journal of Energy Chemistry, 2013, 22, 1-20.	12.9	206
63	Innentitelbild: A Tailored Microenvironment for Catalytic Biomass Conversion in Inorganic–Organic Nanoreactors (Angew. Chem. 39/2013). Angewandte Chemie, 2013, 125, 10314-10314.	2.0	0
64	A Tailored Microenvironment for Catalytic Biomass Conversion in Inorganic–Organic Nanoreactors. Angewandte Chemie, 2013, 125, 10539-10541.	2.0	24
65	Rücktitelbild: Stabilization of Copper Catalysts for Liquid-Phase Reactions by Atomic Layer Deposition (Angew. Chem. 51/2013). Angewandte Chemie, 2013, 125, 14068-14068.	2.0	1
66	A Biomimetic Pathway for Vanadiumâ€Catalyzed Aerobic Oxidation of Alcohols: Evidence for a Baseâ€Assisted Dehydrogenation Mechanism. Chemistry - A European Journal, 2012, 18, 14981-14988.	3.3	53
67	Acid-Functionalized SBA-15-Type Periodic Mesoporous Organosilicas and Their Use in the Continuous Production of 5-Hydroxymethylfurfural. ACS Catalysis, 2012, 2, 1865-1876.	11.2	115
68	Spectroscopic and structural characterization of Cr(II)/SiO2 active site precursors in model Phillips polymerization catalysts. Journal of Catalysis, 2012, 293, 1-12.	6.2	56
69	Two-step synthesis of Fe ₂ O ₃ and Co ₃ O ₄ nanoparticles: towards a general method for synthesizing nanocrystalline metal oxides with high surface area and thermal stability. RSC Advances, 2012, 2, 121-124.	3.6	7
70	Origin of the ZnCl2 Effect on CH3ReO3/γ-Al2O3 in Olefin Metathesis. Topics in Catalysis, 2012, 55, 530-537.	2.8	19
71	Interactions Involving Lewis Acidic Aluminum Sites in Oxide-Supported Perrhenate Catalysts. Journal of Physical Chemistry C, 2011, 115, 9012-9024.	3.1	28
72	Evidence for the Pairwise Disposition of Grafting Sites on Highly Dehydroxylated Silicas via Their Reactions with Ga(CH ₃) ₃ . Journal of the American Chemical Society, 2011, 133, 4847-4855.	13.7	49

#	Article	IF	CITATIONS
73	Pd ²⁺ /Pd ⁰ Redox Cycling in Hexagonal YMn _{0.5} Fe _{0.5} O ₃ : Implications for Catalysis by PGM-Substituted Complex Oxides. Inorganic Chemistry, 2011, 50, 8073-8084.	4.0	14
74	Acid-Functionalized SBA-15-Type Silica Catalysts for Carbohydrate Dehydration. ACS Catalysis, 2011, 1, 719-728.	11.2	184
75	Clayâ€Catalyzed Cracking Leads to Suppressed Flammability in Clay–Polyolefin Nanocomposites. Macromolecular Materials and Engineering, 2011, 296, 1075-1080.	3.6	4
76	Quantitative Investigation of a Hybrid Ziegler–Natta Catalyst Support Prepared by Grafting Di(n) Tj ETQq0 0 0 n 4632-4639.	gBT /Over 3.3	rlock 10 Tf 5 9
77	Bifunctional Solid Catalysts for the Selective Conversion of Fructose to 5-Hydroxymethylfurfural. Topics in Catalysis, 2010, 53, 1185-1192.	2.8	96
78	Mechanism for CO oxidation catalyzed by Pd-substituted BaCeO3, and the local structure of the active sites. Journal of Catalysis, 2010, 273, 83-91.	6.2	18
79	Catalytic disassembly of an organosolv lignin via hydrogen transfer from supercritical methanol. Green Chemistry, 2010, 12, 1640.	9.0	306
80	La ₄ LiAuO ₈ and La ₂ BaPdO ₅ : Comparing Two Highly Stable d ⁸ Square-Planar Oxides. Inorganic Chemistry, 2010, 49, 4670-4680.	4.0	18
81	CO Oxidation Catalyzed by Pd-doped BaCeO3: Coexistence of Langmuir-Hinshelwood and BaCeO3-mediated Mechanisms. Materials Research Society Symposia Proceedings, 2009, 1217, 1.	0.1	1
82	Evidence for a chromasiloxane ring size effect in Phillips (Cr/SiO2) polymerization catalysts. Journal of Catalysis, 2009, 262, 44-56.	6.2	85
83	Solid-state Spectroscopic and Structural Investigation of cis-(CH3)2Au(O,O′-acac). Journal of Chemical Crystallography, 2009, 39, 173-177.	1.1	2
84	IR spectroscopic investigation of cis-(CH3)2Au(O,O′-acac) and cis-(CD3)2Au(O,O′-acac). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2008, 71, 969-974.	3.9	1
85	Effect of silica type and grafting method on the reactivity of tetraneopentylchromium(IV) towards and on silica. Inorganica Chimica Acta, 2008, 361, 3315-3321.	2.4	15
86	Highly dispersed clay–polyolefin nanocomposites free of compatibilizers, via the in situ polymerization of α-olefins by clay-supported catalysts. Chemical Communications, 2008, , 4186.	4.1	31
87	Hexagonal YFe _{1â~`<i>x</i>} Pd _{<i>x</i>} O _{3â^´l´} : Nonperovskite Host Compounds for Pd ²⁺ and Their Catalytic Activity for CO Oxidation. Chemistry of Materials, 2008, 20, 6567-6576.	6.7	74
88	Nature of ≡SiOCrO ₂ Cl and (≡SiO) ₂ CrO ₂ Sites Prepared by Grafting CrO ₂ Cl ₂ onto Silica. Journal of Physical Chemistry C, 2008, 112, 6439-6449.	3.1	47
89	Spectroscopically Distinct Sites Present in Methyltrioxorhenium Grafted onto Silicaâ^'Alumina, and Their Abilities to Initiate Olefin Metathesis. Journal of the American Chemical Society, 2007, 129, 8912-8920.	13.7	50
90	BaCe1-xPdxO3-δ(0 ≤≤0.1): Redox Controlled Ingress and Egress of Palladium in a Perovskite. Chemistry of Materials, 2007, 19, 1418-1426.	6.7	46

#	Article	IF	CITATIONS
91	A Pd-doped perovskite catalyst, BaCe1â^'xPdxO3â^'Î ƁaCe1â^'xPdxO3â^'Î ´, for CO oxidation. Journal of Catalysis, 2007, 249, 349-358.	6.2	91
92	Methyltrioxorhenium Interactions with Lewis Acid Sites of an Amorphous Silicaâ^'Alumina. Organometallics, 2006, 25, 2157-2165.	2.3	41
93	Formation of Digallium Sites in the Reaction of Trimethylgallium with Silica. Organometallics, 2006, 25, 1891-1899.	2.3	41
94	Abiotic methylation of mercury in the aquatic environment. Science of the Total Environment, 2006, 368, 126-137.	8.0	208
95	An investigation of catalyst/cocatalyst/support interactions in silica-supported olefin polymerization catalysts based on Cp*TiMe3*. Topics in Catalysis, 2005, 34, 109-120.	2.8	28
96	An X-ray Absorption Study of Two VOCl3-Modified Silicas:  Evidence for Chlorideâ^'Silica Interactions. Journal of Physical Chemistry B, 2005, 109, 5005-5011.	2.6	31
97	Kinetics and Mechanism of the Mercury(II)-Assisted Hydrolysis of Methyl Iodide. Inorganic Chemistry, 2005, 44, 2507-2512.	4.0	9
98	Methylmercury artifact formation during solid-phase extraction of water samples using sulfhydryl cotton fiber adsorbent. Analytica Chimica Acta, 2004, 516, 171-177.	5.4	25
99	Reply to "Comment on â€~Kinetics and Mechanism of Nitrite Oxidation by HOBr/BrO-in Atmospheric Water and Comparison with Oxidation by HOCI/CIO'Â― Journal of Physical Chemistry A, 2004, 108, 10617-10618.	2.5	0
100	Silica-supported rhodium hydrides stabilized by triisopropylphosphine. Journal of Molecular Catalysis A, 2003, 204-205, 457-463.	4.8	14
101	Kinetics and Mechanism of Nitrite Oxidation by HOBr/BrO- in Atmospheric Water and Comparison with Oxidation by HOCl/ClO Journal of Physical Chemistry A, 2002, 106, 11891-11896.	2.5	16
102	Spontaneous Evolution of Silica-Supported Ti Amide Fragments to Imine and Imido Complexes. Organometallics, 2001, 20, 237-239.	2.3	48
103	Sulfite Stabilization and Reduction of the Aqueous Mercuric Ion:Â Kinetic Determination of Sequential Formation Constants. Journal of Physical Chemistry A, 2001, 105, 3190-3195.	2.5	74
104	Title is missing!. Transition Metal Chemistry, 2001, 26, 271-275.	1.4	5
105	A Kinetic Study of Ethylene and 1-Hexene Homo- and Copolymerization Catalyzed by a Silica-Supported Cr(IV) Complex:  Evidence for Propagation by a Migratory Insertion Mechanism. Journal of the American Chemical Society, 2000, 122, 8968-8976.	13.7	89
106	Reduction of the Aqueous Mercuric Ion by Sulfite:Â UV Spectrum of HgSO3and Its Intramolecular Redox Reaction. Journal of Physical Chemistry A, 2000, 104, 1621-1626.	2.5	133
107	Modification of Silica Surfaces by Metallasiloxanes Containing Mo and Ti:Â Evidence for Concurrent Metal and Ligand Chemisorption. Chemistry of Materials, 2000, 12, 857-862.	6.7	21
108	Mono- and Dinuclear Silica-Supported Titanium(IV) Complexes and the Effect of TiOTi Connectivity on Reactivity. Journal of the American Chemical Society, 1999, 121, 7201-7210.	13.7	123

#	Article	IF	CITATIONS
109	Ligand Exchange and Oxidative Addition on a Silica-Supported Rhodium Complex,trans-[(â‹®SiO)Rh(PMe3)2(CO)]. Journal of the American Chemical Society, 1998, 120, 1883-1890.	13.7	22
110	Nonhydrolytic Surface Synthesis of a Heterobimetallic Vâ^'Ti Alkoxide Complex on Silica. Chemistry of Materials, 1998, 10, 620-625.	6.7	16
111	Synthesis and Characterization of Silica-Stabilized Chromium(IV) Alkylidene Complexes. Journal of the American Chemical Society, 1998, 120, 415-416.	13.7	87
112	Characterization of Silica-Supported Vanadium(V) Complexes Derived from Molecular Precursors and Their Ligand Exchange Reactions. Langmuir, 1997, 13, 1545-1551.	3.5	66
113	Reactions of Tetraalkylchromium(IV) with Silica:Â Mechanism of Grafting and Characterization of Surface Organometallic Complexes. Organometallics, 1997, 16, 86-92.	2.3	77
114	Surface Organometallic Chemistry on Oxides:Â Reaction of Trimethylphosphine with Bis(allyl)rhodium Grafted onto Silica. Inorganic Chemistry, 1996, 35, 869-875.	4.0	18
115	Supramolecular approach to metal-support interactions: reactivity of silica-supported bis(allyl)rhodium(III) and the influence of surface hydroxyl groups. Journal of Molecular Catalysis A, 1996, 107, 263-271.	4.8	12
116	Stoichiometric and catalytic reactivity of organometallic fragments supported on inorganic oxides. Journal of Molecular Catalysis, 1994, 86, 5-22.	1.2	56
117	Coordination Chemistry on Surfaces: A New Method To Graft Rhenium(VII) Oxide on Highly Dehydroxylated Oxides. Journal of the American Chemical Society, 1994, 116, 12069-12070.	13.7	36
118	Surface Organometallic Chemistry on Oxides: Reaction of CO with Bis(allyl)rhodium Grafted onto Silica, Titania, and Alumina. Inorganic Chemistry, 1994, 33, 2509-2517.	4.0	30