
João Folgado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7736590/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multibody modelling of the foot for the biomechanical analysis of the ankle joint during running: A narrative review. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2022, 236, 338-353.	0.5	3
2	Metaphyseal sleeves in revision total knee arthroplasties: Computational analysis of bone remodeling. Knee, 2022, 37, 10-19.	0.8	4
3	Contact patterns in the ankle joint after lateral ligamentous injury during internal rotation: A computational study. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2021, 235, 82-88.	1.0	3
4	Why are tapes better than wires in knotless rotator cuff repairs? An evaluation of force, pressure and contact area in a tendon bone unit mechanical model. Journal of Experimental Orthopaedics, 2021, 8, 9.	0.8	3
5	Surrogateâ€based multiâ€objective design optimization of a coronary stent: Altering geometry toward improved biomechanical performance. International Journal for Numerical Methods in Biomedical Engineering, 2021, 37, e3453.	1.0	6
6	Proximal and mid-thigh fascia lata graft constructs used for arthroscopic superior capsule reconstruction show equivalent biomechanical properties: an inÂvitro human cadaver study. JSES International, 2021, 5, 439-446.	0.7	5
7	Influence of the PFNA screw position on the risk of cut-out in an unstable intertrochanteric fracture: a computational analysis. Medical Engineering and Physics, 2021, 97, 70-76.	0.8	5
8	Shoulder Positioning during Superior Capsular Reconstruction: Computational Analysis of Graft Integrity and Shoulder Stability. Biology, 2021, 10, 1263.	1.3	3
9	Stress analysis in a bone fracture fixed with topology-optimised plates. Biomechanics and Modeling in Mechanobiology, 2020, 19, 693-699.	1.4	19
10	Primary stability analysis of stemless shoulder implants. Medical Engineering and Physics, 2020, 81, 22-29.	0.8	17
11	Comparison of 3 supraspinatus tendon repair techniques – a 3D computational finite element analysis. Computer Methods in Biomechanics and Biomedical Engineering, 2020, 23, 1387-1394.	0.9	3
12	Bone adaptation impact of stemless shoulder implants: a computational analysis. Journal of Shoulder and Elbow Surgery, 2019, 28, 1886-1896.	1.2	32
13	A Biomechanical Approach for Bone Regeneration Inside Scaffolds Embedded with BMP-2. Computational Methods in Applied Sciences (Springer), 2019, , 67-86.	0.1	0
14	Influence of the Musculotendon Dynamics on the Muscle Force-Sharing Problem of the Shoulder—A Fully Inverse Dynamics Approach. Journal of Biomechanical Engineering, 2018, 140, .	0.6	13
15	Bone remodelling of the humerus after a resurfacing and a stemless shoulder arthroplasty. Clinical Biomechanics, 2018, 59, 78-84.	0.5	15
16	Surrogateâ€based visualization and sensitivity analysis of coronary stent performance: A study on the influence of geometric design. International Journal for Numerical Methods in Biomedical Engineering, 2018, 34, e3125.	1.0	13
17	Computational model of mesenchymal migration in 3D under chemotaxis. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20, 59-74.	0.9	22
18	Automated femoral landmark extraction for optimal prosthesis placement in total hip arthroplasty. International Journal for Numerical Methods in Biomedical Engineering, 2017, 33, e2844.	1.0	8

João Folgado

#	Article	IF	CITATIONS
19	Computational design and fabrication of a novel bioresorbable cage for tibial tuberosity advancement application. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65, 344-355.	1.5	15
20	A new shoulder model with a biologically inspired glenohumeral joint. Medical Engineering and Physics, 2016, 38, 969-977.	0.8	16
21	Full-thickness tears of the supraspinatus tendon: A three-dimensional finite element analysis. Journal of Biomechanics, 2016, 49, 3962-3970.	0.9	19
22	A window moving inverse dynamics optimization for biomechanics of motion. Multibody System Dynamics, 2016, 38, 157-171.	1.7	21
23	A simple controller to overcome the lack of correlation between forward and inverse dynamic analysis of human motion tasks. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2016, 230, 350-367.	0.5	0
24	Fully automatic segmentation of femurs with medullary canal definition in high and in low resolution CT scans. Medical Engineering and Physics, 2016, 38, 1474-1480.	0.8	30
25	Computational reverse shoulder prosthesis model: Experimental data and verification. Journal of Biomechanics, 2015, 48, 3242-3251.	0.9	5
26	Development of a Spinal Fusion Cage by Multiscale Modelling: Application to the Human Cervical Spine. Procedia Engineering, 2015, 110, 183-190.	1.2	4
27	Critical analysis of musculoskeletal modelling complexity in multibody biomechanical models of the upper limb. Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18, 749-759.	0.9	31
28	Computational analysis of polyethylene wear in anatomical and reverse shoulder prostheses. Medical and Biological Engineering and Computing, 2015, 53, 111-122.	1.6	15
29	In silico Mechano-Chemical Model of Bone Healing for the Regeneration of Critical Defects: The Effect of BMP-2. PLoS ONE, 2015, 10, e0127722.	1.1	47
30	Subject-specific bone remodelling of the scapula. Computer Methods in Biomechanics and Biomedical Engineering, 2014, 17, 1129-1143.	0.9	8
31	Biomechanical analysis of the tibial tray design in TKA: comparison between modular and offset tibial trays. Knee Surgery, Sports Traumatology, Arthroscopy, 2014, 22, 590-598.	2.3	5
32	Is the callus shape an optimal response to a mechanobiological stimulus?. Medical Engineering and Physics, 2014, 36, 1508-1514.	0.8	13
33	Bone remodelling of the scapula after a total shoulder arthroplasty. Biomechanics and Modeling in Mechanobiology, 2014, 13, 827-838.	1.4	13
34	Multibody System of the Upper Limb Including a Reverse Shoulder Prosthesis. Journal of Biomechanical Engineering, 2013, 135, 111005.	0.6	18
35	A Finite Element Model to Simulate Femoral Fractures in Calves: Testing Different Polymers for Intramedullary Interlocking Nails. Veterinary Surgery, 2012, 41, 838-844.	0.5	11
36	Biomechanical analysis of the anterior cervical fusion. Computer Methods in Biomechanics and Biomedical Engineering, 2012, 15, 1337-1346.	0.9	12

João Folgado

#	Article	IF	CITATIONS
37	On the optimal shape of hip implants. Journal of Biomechanics, 2012, 45, 239-246.	0.9	66
38	Bone remodelling analysis of the humerus after a shoulder arthroplasty. Medical Engineering and Physics, 2012, 34, 1132-1138.	0.8	26
39	A multibody biomechanical model of the upper limb including the shoulder girdle. Multibody System Dynamics, 2012, 28, 83-108.	1.7	58
40	Dynamics of the Upper Limb with a Detailed Model for the Shoulder. , 2012, , 413-420.		0
41	Wear analysis in anatomical and reversed shoulder prostheses. Computer Methods in Biomechanics and Biomedical Engineering, 2011, 14, 883-892.	0.9	8
42	Structural analysis of the intervertebral discs adjacent toÂanÂinterbody fusion using multibody dynamics andÂfinite element cosimulation. Multibody System Dynamics, 2011, 25, 245-270.	1.7	30
43	Multibody biomechanical models of the upper limb. Procedia IUTAM, 2011, 2, 4-17.	1.2	22
44	Computational analysis of bone remodeling during an anterior cervical fusion. Journal of Biomechanics, 2010, 43, 2875-2880.	0.9	16
45	The Influence of the Pelvic Bone on the Computational Results of the Acetabular Component of a Total Hip Prosthesis. Journal of Biomechanical Engineering, 2010, 132, 054503.	0.6	24
46	Bone remodelling analysis of a bovine femur for a veterinary implant design. Computer Methods in Biomechanics and Biomedical Engineering, 2009, 12, 683-690.	0.9	9
47	Influence of femoral stem geometry, material and extent of porous coating on bone ingrowth and atrophy in cementless total hip arthroplasty: an iterative finite element model. Computer Methods in Biomechanics and Biomedical Engineering, 2009, 12, 135-145.	0.9	32
48	Multilayered learning architecture applied to humanoid locomotion. Computer Methods in Biomechanics and Biomedical Engineering, 2009, 12, 135-137.	0.9	17
49	Three-dimensional shape optimization of hip prostheses using a multicriteria formulation. Structural and Multidisciplinary Optimization, 2007, 34, 261-275.	1.7	23
50	Computational hip joint simulator for wear and heat generation. Journal of Biomechanics, 2007, 40, 2358-2366.	0.9	80
51	Femoral stem shape optimization for prosthesis stability. Journal of Biomechanics, 2006, 39, S516.	0.9	0
52	Shape optimization of uncemented hip prostheses. Virtual and Physical Prototyping, 2006, 1, 147-158.	5.3	3
53	Evaluation of osteoporotic bone quality by a computational model for bone remodeling. Computers and Structures, 2004, 82, 1381-1388.	2.4	14
54	Shape Optimization of a Cementless Hip Stem for a Minimum of Interface Stress and Displacement. Computer Methods in Biomechanics and Biomedical Engineering, 2004, 7, 51-61.	0.9	35

#	Article	IF	CITATIONS
55	A contact model with ingrowth control for bone remodelling around cementless stems. Journal of Biomechanics, 2002, 35, 167-176.	0.9	74