
Djamaladdin G Musaev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7736532/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	A Fast Soluble Carbon-Free Molecular Water Oxidation Catalyst Based on Abundant Metals. Science, 2010, 328, 342-345.	6.0	1,354
2	Polyoxometalate water oxidation catalysts and the production of green fuel. Chemical Society Reviews, 2012, 41, 7572.	18.7	678
3	An Allâ€Inorganic, Stable, and Highly Active Tetraruthenium Homogeneous Catalyst for Water Oxidation. Angewandte Chemie - International Edition, 2008, 47, 3896-3899.	7.2	559
4	Efficient Light-Driven Carbon-Free Cobalt-Based Molecular Catalyst for Water Oxidation. Journal of the American Chemical Society, 2011, 133, 2068-2071.	6.6	336
5	Homogeneous Light-Driven Water Oxidation Catalyzed by a Tetraruthenium Complex with All Inorganic Ligands. Journal of the American Chemical Society, 2009, 131, 7522-7523.	6.6	330
6	Site-selective and stereoselective functionalization of unactivated C–H bonds. Nature, 2016, 533, 230-234.	13.7	313
7	A Diruthenium Catalyst for Selective, Intramolecular Allylic C–H Amination: Reaction Development and Mechanistic Insight Gained through Experiment and Theory. Journal of the American Chemical Society, 2011, 133, 17207-17216.	6.6	281
8	C–H activation. Nature Reviews Methods Primers, 2021, 1, .	11.8	277
9	An Exceptionally Fast Homogeneous Carbon-Free Cobalt-Based Water Oxidation Catalyst. Journal of the American Chemical Society, 2014, 136, 9268-9271.	6.6	260
10	Site-selective and stereoselective functionalization of non-activated tertiary C–H bonds. Nature, 2017, 551, 609-613.	13.7	239
11	Decarbonylative organoboron cross-coupling of esters by nickel catalysis. Nature Communications, 2015, 6, 7508.	5.8	237
12	A Noble-Metal-Free, Tetra-nickel Polyoxotungstate Catalyst for Efficient Photocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 2014, 136, 14015-14018.	6.6	213
13	Parameter Calibration of Transition-Metal Elements for the Spin-Polarized Self-Consistent-Charge Density-Functional Tight-Binding (DFTB) Method:  Sc, Ti, Fe, Co, and Ni. Journal of Chemical Theory and Computation, 2007, 3, 1349-1367.	2.3	208
14	Differentiating Homogeneous and Heterogeneous Water Oxidation Catalysis: Confirmation that [Co ₄ (H ₂ O) ₂ (α-PW ₉ O ₃₄) ₂] <sup Is a Molecular Water Oxidation Catalyst. Journal of the American Chemical Society, 2013, 135, 14110-14118.</sup)>10ậ€" <td>^{5up y} 196</td>	^{5up y} 196
15	A Density Functional Study of the Mechanism of the Diimineâ^'Nickel-Catalyzed Ethylene Polymerization Reaction. Journal of the American Chemical Society, 1997, 119, 367-374.	6.6	181
16	<i>>D</i> ₂ -Symmetric Dirhodium Catalyst Derived from a 1,2,2-Triarylcyclopropanecarboxylate Ligand: Design, Synthesis and Application. Journal of the American Chemical Society, 2011, 133, 19198-19204.	6.6	180
17	Scope and Mechanistic Analysis of the Enantioselective Synthesis of Allenes by Rhodium-Catalyzed Tandem Ylide Formation/[2,3]-Sigmatropic Rearrangement between Donor/Acceptor Carbenoids and Propargylic Alcohols. Journal of the American Chemical Society, 2012, 134, 15497-15504.	6.6	177
18	Theoretical Insight into the Câ^'C Coupling Reactions of the Vinyl, Phenyl, Ethynyl, and Methyl Complexes of Palladium and Platinum. Organometallics, 2005, 24, 715-723.	1.1	164

#	Article	IF	CITATIONS
19	Key Mechanistic Features of Ni-Catalyzed C–H/C–O Biaryl Coupling of Azoles and Naphthalen-2-yl Pivalates. Journal of the American Chemical Society, 2014, 136, 14834-14844.	6.6	164
20	Structural, Physicochemical, and Reactivity Properties of an All-Inorganic, Highly Active Tetraruthenium Homogeneous Catalyst for Water Oxidation. Journal of the American Chemical Society, 2009, 131, 17360-17370.	6.6	162
21	Key Mechanistic Features of Enantioselective C–H Bond Activation Reactions Catalyzed by [(Chiral) Tj ETQq1 1 2012, 134, 1690-1698.	0.784314 6.6	rgBT /Overl 159
22	A Late-Transition Metal Oxo Complex: K7Na9[O=PtIV(H2O)L2], L = [PW9O34]9 Science, 2004, 306, 2074-2077.	6.0	158
23	Theoretical Study of Substituent Effects in the Diimineâ^'M(II) Catalyzed Ethylene Polymerization Reaction Using the IMOMM Method. Journal of the American Chemical Society, 1998, 120, 1581-1587.	6.6	153
24	Mechanism of the Methane → Methanol Conversion Reaction Catalyzed by Methane Monooxygenase:  A Density Functional Study. Journal of the American Chemical Society, 1999, 121, 7249-7256.	6.6	152
25	Versatile reactivity of Pd-catalysts: mechanistic features of the mono-N-protected amino acid ligand and cesium-halide base in Pd-catalyzed C–H bond functionalization. Chemical Society Reviews, 2014, 43, 5009-5031.	18.7	148
26	Molecular orbital study of H2 and CH4 activation on small metal clusters. I. Pt, Pd, Pt2, and Pd2. Journal of Chemical Physics, 1998, 108, 8418-8428.	1.2	136
27	Design of catalysts for site-selective and enantioselective functionalization of non-activated primary C–H bonds. Nature Chemistry, 2018, 10, 1048-1055.	6.6	131
28	Effects of the Protein Environment on the Structure and Energetics of Active Sites of Metalloenzymes. ONIOM Study of Methane Monooxygenase and Ribonucleotide Reductase. Journal of the American Chemical Society, 2002, 124, 192-193.	6.6	124
29	Comparative Investigations of Cp*-Based Group 9 Metal-Catalyzed Direct C–H Amination of Benzamides. Organometallics, 2014, 33, 4076-4085.	1.1	123
30	Theory Does Not Support an Osmaoxetane Intermediate in the Osmium-Catalyzed Dihydroxylation of Olefins. Journal of the American Chemical Society, 1996, 118, 11660-11661.	6.6	121
31	In situ probe of photocarrier dynamics in water-splitting hematite (α-Fe2O3) electrodes. Energy and Environmental Science, 2012, 5, 8923.	15.6	121
32	N2 Cleavage by Three-Coordinate Group 6 Complexes. W(III) Complexes Would Be Better Than Mo(III) Complexes. Journal of the American Chemical Society, 1995, 117, 12366-12367.	6.6	118
33	Molecular Orbital Study of the Mechanism of Platinum(0)-Catalyzed Alkene and Alkyne Diboration Reactions. Organometallics, 1997, 16, 1355-1364.	1.1	116
34	Rhodium-catalyzed enantioselective cyclopropanation of electron-deficient alkenes. Chemical Science, 2013, 4, 2844.	3.7	116
35	Ab Initio MO Study of the Full Cycle of Olefin Hydroformylation Catalyzed by a Rhodium Complex, RhH(CO)2(PH3)2. Organometallics, 1997, 16, 1065-1078.	1.1	115
36	Theoretical Studies of Ethylene Polymerization Reactions Catalyzed by Zirconium and Titanium Chelating Alkoxide Complexes. Journal of the American Chemical Society, 1997, 119, 7190-7196.	6.6	114

#	Article	IF	CITATIONS
37	Four-Coordinate Molybdenum Chalcogenide Complexes Relevant to Nitrous Oxide Nâ^'N Bond Cleavage by Three-Coordinate Molybdenum(III):A Synthesis, Characterization, Reactivity, and Thermochemistry. Journal of the American Chemical Society, 1998, 120, 2071-2085.	6.6	113
38	Density Functional Study of the Mechanism of the Palladium(II)-Catalyzed Ethylene Polymerization Reaction. Organometallics, 1997, 16, 1933-1945.	1.1	109
39	Electron Transfer Dynamics in Semiconductor–Chromophore–Polyoxometalate Catalyst Photoanodes. Journal of Physical Chemistry C, 2013, 117, 918-926.	1.5	108
40	An ab initio molecular orbital study of the mechanism of the rhodium(I)-catalyzed olefin hydroboration reaction. Journal of the American Chemical Society, 1994, 116, 10693-10702.	6.6	106
41	Theoretical Predictions and Single-Crystal Neutron Diffraction and Inelastic Neutron Scattering Studies on the Reaction of Dihydrogen with the Dinuclear Dinitrogen Complex of Zirconium [P2N2]Zr(μ-η2·N2)Zr[P2N2], P2N2= PhP(CH2SiMe2NSiMe2CH2)2PPh. Journal of the American Chemical Society. 1999. 121, 523-528.	6.6	106
42	Density Functional Study on Activation of ortho-CH Bond in Aromatic Ketone by Ru Complex. Role of Unusual Five-Coordinated d6 Metallacycle Intermediate with Agostic Interaction. Journal of the American Chemical Society, 1998, 120, 12692-12693.	6.6	105
43	Molecular Orbital and IMOMM Studies of the Chain Transfer Mechanisms of the Diimineâ °M(II)-Catalyzed (M = Ni, Pd) Ethylene Polymerization Reaction. Organometallics, 1998, 17, 1850-1860.	1.1	105
44	The True Nature of the Di-iron(III) γ-Keggin Structure in Water: Catalytic Aerobic Oxidation and Chemistry of an Unsymmetrical Trimer. Journal of the American Chemical Society, 2006, 128, 11268-11277.	6.6	105
45	Ab Initio Molecular Orbital Study of the Mechanism of H-H, C-H, N-H, O-H and Si-H Bond Activation on Transient Cyclopentadienylcarbonylrhodium. Journal of the American Chemical Society, 1995, 117, 799-805.	6.6	103
46	Theoretical Study on Bis(imino)pyridylâ^Fe(II) Olefin Poly- and Oligomerization Catalysts. Dominance of Different Spin States in Propagation and β-Hydride Transfer Pathways. Organometallics, 2001, 20, 2007-2026.	1.1	102
47	Broadâ€Spectrum Liquid―and Gasâ€Phase Decontamination of Chemical Warfare Agents by Oneâ€Dimensional Heteropolyniobates. Angewandte Chemie - International Edition, 2016, 55, 7403-7407.	7.2	101
48	Desymmetrization of cyclohexanes by site- and stereoselective C–H functionalization. Nature, 2018, 564, 395-399.	13.7	100
49	Why Do Pt(PR3)2Complexes Catalyze the Alkyne Diboration Reaction, but Their Palladium Analogues Do Not? A Density Functional Study. Organometallics, 1998, 17, 742-751.	1.1	99
50	Vinylâ^'Vinyl Coupling on Late Transition Metals through Câ^'C Reductive Elimination Mechanism. A Computational Study. Journal of the American Chemical Society, 2002, 124, 2839-2852.	6.6	99
51	Catalytic Adaptive Recognition of Thiol (SH) and Selenol (SeH) Groups Toward Synthesis of Functionalized Vinyl Monomers. Journal of the American Chemical Society, 2012, 134, 6637-6649.	6.6	97
52	Critical Effect of Phosphane Ligands on the Mechanism of Carbon–Carbon Bond Formation Involving Palladium(II) Complexes: A Theoretical Investigation of Reductive Elimination from Squareâ€Planar and Tâ€Shaped Species. European Journal of Inorganic Chemistry, 2007, 2007, 5390-5399.	1.0	95
53	Visible-light-driven hydrogen evolution from water using a noble-metal-free polyoxometalate catalyst. Journal of Catalysis, 2013, 307, 48-54.	3.1	95
54	Rh ₂ (II,III) Catalysts with Chelating Carboxylate and Carboxamidate Supports: Electronic Structure and Nitrene Transfer Reactivity. Journal of the American Chemical Society, 2016, 138, 2327-2341.	6.6	95

#	Article	IF	CITATIONS
55	Metalâ^'Peroxo versus Metalâ^'Oxo Oxidants in Non-Heme Iron-Catalyzed Olefin Oxidations:Â Computational and Experimental Studies on the Effect of Water. Journal of the American Chemical Society, 2005, 127, 6548-6549.	6.6	94
56	Density Functional Study on Highly Ortho-Selective Addition of an Aromatic CH Bond to Olefins Catalyzed by a Ru(H)2(CO)(PR3)3Complex. Organometallics, 2000, 19, 2318-2329.	1.1	90
57	Dioxygen and Water Activation Processes on Multi-Ru-Substituted Polyoxometalates: Comparison with the "Blue-Dimer―Water Oxidation Catalyst. Journal of the American Chemical Society, 2009, 131, 6844-6854.	6.6	88
58	Unusual31P Chemical Shielding Tensors in Terminal Phosphido Complexes Containing a Phosphorusâ^'Metal Triple Bond. Journal of the American Chemical Society, 1996, 118, 10654-10655.	6.6	87
59	Computational Study of the Aminolysis of Esters. The Reaction of Methylformate with Ammonia. Journal of Organic Chemistry, 2003, 68, 1496-1502.	1.7	87
60	Revisiting the Polyoxometalate-Based Late-Transition-Metal-Oxo Complexes: The "Oxo Wall―Stands. Inorganic Chemistry, 2012, 51, 7025-7031.	1.9	86
61	Theoretical Studies of the Factors Controlling Insertion Barriers for Olefin Polymerization by the Titanium-Chelating Bridged Catalysts. A Search for More Active New Catalysts. Organometallics, 1999, 18, 373-379.	1.1	83
62	Computational Insights into the Mechanism of Radical Generation in B12-Dependent Methylmalonyl-CoA Mutase. Journal of the American Chemical Society, 2006, 128, 1287-1292.	6.6	83
63	Synthesis and Characterization of a Metal-to-Polyoxometalate Charge Transfer Molecular Chromophore. Journal of the American Chemical Society, 2011, 133, 20134-20137.	6.6	81
64	A Palladium-Oxo Complex. Stabilization of This Proposed Catalytic Intermediate by an Encapsulating Polytungstate Ligand. Journal of the American Chemical Society, 2005, 127, 11948-11949.	6.6	79
65	Understanding the Reactivity of Pd ⁰ /PR ₃ -Catalyzed Intermolecular C(sp ³)–H Bond Arylation. Journal of the American Chemical Society, 2013, 135, 14206-14214.	6.6	77
66	Long lived charge separation in iridium(iii)-photosensitized polyoxometalates: synthesis, photophysical and computational studies of organometallic–redox tunable oxide assemblies. Chemical Science, 2013, 4, 1737.	3.7	75
67	Broadâ€Spectrum Liquid―and Gasâ€Phase Decontamination of Chemical Warfare Agents by Oneâ€Dimensional Heteropolyniobates. Angewandte Chemie, 2016, 128, 7529-7533.	1.6	75
68	Flexible Reaction Pocket on Bulky Diphosphine–Ir Complex Controls Regioselectivity in <i>para</i> -Selective C–H Borylation of Arenes. ACS Catalysis, 2016, 6, 7536-7546.	5.5	73
69	Density Functional Study on the Mechanism of Palladium(0)-Catalyzed Thioboration Reaction of Alkynes. Differences between Pd(0) and Pt(0) Catalysts and between Thioboration and Diboration. Organometallics, 1998, 17, 1383-1392.	1.1	72
70	Terminal Gold-Oxo Complexes. Journal of the American Chemical Society, 2007, 129, 11118-11133.	6.6	72
71	Factors Impacting the Mechanism of the Mono-N-Protected Amino Acid Ligand-Assisted and Directing-Group-Mediated C–H Activation Catalyzed by Pd(II) Complex. ACS Catalysis, 2015, 5, 830-840.	5.5	72
72	Catalyst-Controlled Selective Functionalization of Unactivated C–H Bonds in the Presence of Electronically Activated C–H Bonds. Journal of the American Chemical Society, 2018, 140, 12247-12255.	6.6	68

#	Article	IF	CITATIONS
73	Molecular Orbital Study of H2and CH4Activation on Small Metal Clusters. 2. Pd3and Pt3. Journal of Physical Chemistry A, 1998, 102, 6373-6384.	1.1	67
74	Water splitting with polyoxometalate-treated photoanodes: enhancing performance through sensitizer design. Chemical Science, 2015, 6, 5531-5543.	3.7	67
75	Computational studies of reaction mechanisms of methane monooxygenase and ribonucleotide reductase. Journal of Computational Chemistry, 2002, 23, 59-76.	1.5	63
76	Computational Modeling of Di-Transition-Metal-Substituted Î ³ -Keggin Polyoxometalate Anions. Structural Refinement of the Protonated Divacant Lacunary Silicodecatungstate. Inorganic Chemistry, 2004, 43, 7702-7708.	1.9	63
77	Ab initio molecular orbital study of the molecular and electronic structure of FeCH+2 and of the reaction mechanism of FeCH+2+H2. Journal of Chemical Physics, 1994, 101, 10697-10707.	1.2	61
78	Ab initio study of the molecular and electronic structure of CoCH2+ and of the reaction mechanism of methylenecobalt(1+) + hydrogen. The Journal of Physical Chemistry, 1993, 97, 11435-11444.	2.9	59
79	Molecular Orbital Study of the Reaction Mechanism of Sc+with Methane. Comparison of the Reactivity of Early and Late First-Row Transition Metal Cations and Their Carbene Complexes. The Journal of Physical Chemistry, 1996, 100, 11600-11609.	2.9	59
80	Computational Studies of Tungsten-Catalyzedendo-Selective Cycloisomerization of 4-Pentyn-1-ol. Journal of the American Chemical Society, 2002, 124, 4149-4157.	6.6	59
81	Tetracobalt-polyoxometalate catalysts for water oxidation: Key mechanistic details. Journal of Catalysis, 2017, 350, 56-63.	3.1	59
82	Cu-Catalyzed aromatic C–H imidation with N-fluorobenzenesulfonimide: mechanistic details and predictive models. Chemical Science, 2017, 8, 988-1001.	3.7	57
83	Insights into the Mechanism of Selective Olefin Epoxidation Catalyzed by [γ-(SiO4)W10O32H4]4 A Computational Study. Inorganic Chemistry, 2006, 45, 5703-5709.	1.9	56
84	Factors Controlling Stability and Reactivity of Dimeric Pd(II) Complexes in C–H Functionalization Catalysis. ACS Catalysis, 2016, 6, 829-839.	5.5	56
85	Ab initio molecular orbital study of the electronic and geometric structure of methylenerhodium(1+) and the reaction mechanism: RhCH2+ + H2 .fwdarw. Rh+ + CH4. The Journal of Physical Chemistry, 1993, 97, 4064-4075.	2.9	55
86	Mechanistic Details of Pd(II)-Catalyzed C–H lodination with Molecular I ₂ : Oxidative Addition vs Electrophilic Cleavage. Journal of the American Chemical Society, 2015, 137, 9022-9031.	6.6	53
87	Title is missing!. Topics in Catalysis, 1999, 7, 107-123.	1.3	52
88	Insights into Photoinduced Electron Transfer between [Ru(bpy)3]2+ and [S2O8]2â^' in Water: Computational and Experimental Studies. Journal of Physical Chemistry A, 2010, 114, 73-80.	1.1	51
89	Theoretical Studies of Oxidative Addition of Eâ^'E Bonds (E = S, Se, Te) to Palladium(0) and Platinum(0) Complexes. Organometallics, 2005, 24, 4908-4914.	1.1	50
90	Cu-based Polyoxometalate Catalyst for Efficient Catalytic Hydrogen Evolution. Inorganic Chemistry, 2016, 55, 6750-6758.	1.9	50

#	Article	IF	CITATIONS
91	Synthesis, Structures, and Photochemistry of Tricarbonyl Metal Polyoxoanion Complexes, [X ₂ W ₂₀ O ₇₀ {M(CO) ₃ } ₂] ^{12–} (X = Sb, Bi and M = Re, Mn). Inorganic Chemistry, 2013, 52, 671-678.	1.9	49
92	Iridium(iii)-bis(oxazolinyl)phenyl catalysts for enantioselective C–H functionalization. Chemical Science, 2013, 4, 2590.	3.7	49
93	Adsorption of Multiple H2 Molecules on Pd3 and Pd4 Clusters. A Density Functional Study. Journal of Physical Chemistry A, 2000, 104, 11606-11614.	1.1	48
94	A Role for Pd(IV) in Catalytic Enantioselective C–H Functionalization with Monoprotected Amino Acid Ligands under Mild Conditions. Journal of the American Chemical Society, 2017, 139, 9238-9245.	6.6	48
95	Site-Selective Carbene-Induced C–H Functionalization Catalyzed by Dirhodium Tetrakis(triarylcyclopropanecarboxylate) Complexes. ACS Catalysis, 2018, 8, 678-682.	5.5	48
96	Calculation of Nuclear Quadrupole Parameters in Imidazole Derivatives and Extrapolation to Coenzyme B12. A Theoretical Study. Journal of Physical Chemistry B, 1999, 103, 8618-8627.	1.2	47
97	The Flexibility of Carboxylate Ligands in Methane Monooxygenase and Ribonucleotide Reductase:Â A Density Functional Study. Journal of Physical Chemistry B, 2001, 105, 322-327.	1.2	47
98	All-Inorganic Networks and Tetramer Based on Tin(II)-Containing Polyoxometalates: Tuning Structural and Spectral Properties with Lone-Pairs. Journal of the American Chemical Society, 2014, 136, 12085-12091.	6.6	47
99	Theoretical Studies of Biological Nitrogen Fixation. I. Density Functional Modeling of the Mo-Site of the FeMo-Cofactor. Inorganic Chemistry, 2001, 40, 766-775.	1.9	46
100	Real size of ligands, reactants and catalysts: Studies of structure, reactivity and selectivity by ONIOM and other hybrid computational approachesâ~†. Journal of Molecular Catalysis A, 2010, 324, 104-119.	4.8	46
101	Metal–Organic Framework- and Polyoxometalate-Based Sorbents for the Uptake and Destruction of Chemical Warfare Agents. ACS Applied Materials & Interfaces, 2020, 12, 14641-14661.	4.0	46
102	Mono-N-protected amino acid ligands stabilize dimeric palladium(<scp>ii</scp>) complexes of importance to C–H functionalization. Chemical Science, 2017, 8, 5746-5756.	3.7	45
103	Structure, Stability, and Electronic and NMR Properties of Various Oxo- and Nitrido-Derivatives of [L(Salen)Mn(III)]+, Where L = None and Imidazole. A Density Functional Study. Inorganic Chemistry, 2003, 42, 2606-2621.	1.9	44
104	C–C Cleavage Approach to C–H Functionalization of Saturated Aza-Cycles. ACS Catalysis, 2020, 10, 2929-2941.	5.5	43
105	Rhodium-Stabilized Diarylcarbenes Behaving as Donor/Acceptor Carbenes. ACS Catalysis, 2020, 10, 6240-6247.	5.5	43
106	Electronic states of the triply charged molecular ionN23+and laser-induced Coulomb explosion. Physical Review A, 1999, 59, 4309-4315.	1.0	42
107	Theoretical Studies on the Mechanism of the Methane → Methanol Conversion Reaction Catalyzed by Methane Monooxygenase:Â O-Side vs N-Side Mechanisms. Journal of Physical Chemistry A, 2001, 105, 3615-3622.	1.1	42
108	The Role of the Central Atom in Structure and Reactivity of Polyoxometalates with Adjacent d-Electron Metal Sites. Computational and Experimental Studies of Î ³ -[(Xn+O4)RuIII2(OH)2(MFM)10O32](8-n)-for MFM= Mo and W, and X = AlIII, SiIV, PV, and SVI. Journal of Physical Chemistry B, 2006, 110, 170-173.	1.2	42

#	Article	IF	CITATIONS
109	Tailored quinones support high-turnover Pd catalysts for oxidative C–H arylation with O ₂ . Science, 2020, 370, 1454-1460.	6.0	42
110	Why Does the Reaction of the Dihydrogen Molecule with [P2N2]Zr(μ-η2-N2)Zr[P2N2] Produce [P2N2]Zr(μ-η2-N2H)Zr[P2N2](μ-H) but Not the Thermodynamically More Favorable [P2N2]Zr(μ-NH)2Zr[P2N2 A Theoretical Study. Journal of the American Chemical Society, 1999, 121, 5754-5761.	2] 8. 6	41
111	Ab Initio Molecular Orbital Study of Electronic and Geometrical Structures of MCH ₂ ⁺ Complex and its Reactivity with H ₂ , Where M = Co, Rh, and Ir. Israel Journal of Chemistry, 1993, 33, 307-316.	1.0	39
112	Does Reaction of Three-Coordinate Molybdenum(III) with N2O Proceed via the Same Mechanism as with N2? A Theoretical Study. Organometallics, 1999, 18, 5653-5660.	1.1	39
113	Is the Protein Surrounding the Active Site Critical for Hydrogen Peroxide Reduction by Selenoprotein Glutathione Peroxidase? An ONIOM Study. Journal of Physical Chemistry B, 2006, 110, 13608-13613.	1.2	39
114	Computational Studies of the Geometry and Electronic Structure of an All-Inorganic and Homogeneous Tetra-Ru-Polyoxotungstate Catalyst for Water Oxidation and Its Four Subsequent One-Electron Oxidized Forms. Journal of Physical Chemistry A, 2010, 114, 535-542.	1.1	39
115	Theoretical Study of the Mechanism of Alkane Hydroxylation and Ethylene Epoxidation Reactions Catalyzed by Diiron Bis-oxo Complexes. The Effect of Substrate Molecules. Journal of the American Chemical Society, 2002, 124, 4135-4148.	6.6	38
116	Insights into the Structure and Reactivity of Acylperoxo Complexes in the Kochiâ^'Jacobsenâ^'Katsuki Catalytic System. A Density Functional Study. Journal of the American Chemical Society, 2003, 125, 13879-13889.	6.6	38
117	The mechanism of directed Ni(<scp>ii</scp>)-catalyzed C–H iodination with molecular iodine. Chemical Science, 2018, 9, 1144-1154.	3.7	38
118	Asymmetric Catalysis Special Feature Part II: Epoxidation of unfunctionalized olefins by Mn(salen) catalyst using organic peracids as oxygen source: A theoretical study. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5743-5748.	3.3	37
119	Polyoxometalates in the Design of Effective and Tunable Water Oxidation Catalysts. Israel Journal of Chemistry, 2011, 51, 238-246.	1.0	37
120	Spectroscopic Studies of Light-driven Water Oxidation Catalyzed by Polyoxometalates. Industrial & Engineering Chemistry Research, 2012, 51, 11850-11859.	1.8	37
121	Enantioselectivity Model for Pd-Catalyzed C–H Functionalization Mediated by the Mono-N-protected Amino Acid (MPAA) Family of Ligands. ACS Catalysis, 2017, 7, 4344-4354.	5.5	37
122	Buffer-Induced Acceleration and Inhibition in Polyoxometalate-Catalyzed Organophosphorus Ester Hydrolysis. ACS Catalysis, 2018, 8, 7068-7076.	5.5	37
123	An ab initio molecular orbital study of the unimolecular dissociation reactions of di―and trichloroethylene. Journal of Chemical Physics, 1994, 101, 5942-5956.	1.2	36
124	Diminishing π-Stabilization of an Unsaturated Metal Center:  Hydrogen Bonding to OsHCl(CO)(PtBu2Me)2. Journal of the American Chemical Society, 1998, 120, 12553-12563.	6.6	36
125	Extending Metalâ€ŧoâ€Polyoxometalate Charge Transfer Lifetimes: The Effect of Heterometal Location. Chemistry - A European Journal, 2014, 20, 4297-4307.	1.7	36
126	Does Dinitrogen Hydrogenation Follow Different Mechanisms for [(η5-C5Me4H)2Zr]2(μ2,η2,η2-N2) and {[PhP(CH2SiMe2NSiMe2CH2)PPh]Zr}2(μ2,η2,η2-N2) Complexes? A Computational Study. Journal of the American Chemical Society, 2006, 128, 11391-11403.	6.6	35

#	Article	IF	CITATIONS
127	Enhancing photo-reduction quantum efficiency using quasi-type II core/shell quantum dots. Chemical Science, 2016, 7, 4125-4133.	3.7	35
128	Understanding Regiodivergence in a Pd(II)-Mediated Site-Selective C–H Alkynylation. ACS Catalysis, 2018, 8, 4516-4527.	5.5	35
129	Density Functional Study of Ethylene Polymerization Catalyzed by a Zirconium Non-Cyclopentadienyl Complex, L2ZrCH3+. Effects of Ligands and Bulky Substituents. Organometallics, 2001, 20, 309-323.	1.1	34
130	Can Steric Effects Induce the Mechanism Switch in the Rhodium-Catalyzed Imine Boration Reaction? A Density Functional and ONIOM Study. Organometallics, 2005, 24, 1938-1946.	1.1	34
131	On the Mechanism of Palladium(0) Catalyzed, Copper(I) Carboxylate Mediated Thioorganicâ`'Boronic Acid Desulfitative Coupling. A Noninnocent Role for the Carboxylate Ligand. Organometallics, 2009, 28, 4639-4642.	1.1	34
132	Synthesis, structure, and characterization of two polyoxometalate–photosensitizer hybrid materials. Inorganica Chimica Acta, 2010, 363, 4381-4386.	1.2	34
133	Vicinal Dinitridoruthenium‣ubstituted Polyoxometalates γâ€{XW ₁₀ O ₃₈ {RuN} ₂] ^{6â^'} (X=Si or Ge). Chemistry - A European Journal, 2009, 15, 10233-10243.	1.7	33
134	Comparison of Reactivity and Enantioselectivity between Chiral Bimetallic Catalysts: Bismuth–Rhodium- and Dirhodium-Catalyzed Carbene Chemistry. ACS Catalysis, 2018, 8, 10676-10682.	5.5	33
135	Can the Binuclear Dinitrogen Complex [P2N2]Zr(μ-η2-N2)Zr[P2N2] Activate More Than One Hydrogen Molecule? A Theoretical Study. Organometallics, 2000, 19, 3393-3403.	1.1	32
136	Effect of Carbon Dioxide on the Degradation of Chemical Warfare Agent Simulant in the Presence of Zr Metal Organic Framework MOF-808. Chemistry of Materials, 2019, 31, 9904-9914.	3.2	31
137	Theoretical Studies of the Complex [(BPMEN)Fe(II)(NCCH3)2]2+, Precursor of Non-Heme Iron Catalysts for Olefin Epoxidation and Cis-Dihydroxylation. Inorganic Chemistry, 2003, 42, 8449-8455.	1.9	30
138	Activation and Adsorption of Multiple H2Molecules on a Pd5Cluster:Â A Density Functional Study. Journal of Physical Chemistry A, 2003, 107, 4929-4939.	1.1	30
139	Does the Active Site of Mammalian Glutathione Peroxidase (GPx) Contain Water Molecules? An ONIOM Study. Journal of Physical Chemistry B, 2004, 108, 12643-12645.	1.2	30
140	Density Functional Study of Mo-Carbonyl-Catalyzed Alkynol Cycloisomerization:  Comparison with W-Catalyzed Reaction. Organometallics, 2005, 24, 2921-2929.	1.1	30
141	Structure and Bonding Energy Analysis of Cobalt, Rhodium, and Iridium Borylene Complexes		

#	Article	IF	CITATIONS
145	Adsorption and Dissociation of H ₂ O on a W(111) Surface:  A Computational Study. Journal of Physical Chemistry C, 2007, 111, 17333-17339.	1.5	29
146	Mechanism of the Divanadium-Substituted Polyoxotungstate [γ-1,2-H ₂ SiV ₂ W ₁₀ O ₄₀] ^{4â^'} Catalyzed Olefin Epoxidation by H ₂ O ₂ : A Computational Study. Inorganic Chemistry, 2009, 48, 1871-1878.	1.9	29
147	Differences and Similarities in the Reactivity of Peroxynitrite Anion and Peroxynitrous Acid with Ebselen. A Theoretical Studyâ€. Journal of Physical Chemistry A, 2003, 107, 1563-1573.	1.1	28
148	Experimental and Computational Studies of Nucleophilic Attack, Tautomerization, and Hydride Migration in Benzoheterocycle Triosmium Clusters. Organometallics, 2006, 25, 203-213.	1.1	28
149	Computational Study of the Aminolysis of 2-Benzoxazolinone. Journal of Organic Chemistry, 2003, 68, 3406-3412.	1.7	27
150	Can the Ebselen Derivatives Catalyze the Isomerization of Peroxynitrite to Nitrate?. Journal of the American Chemical Society, 2003, 125, 3877-3888.	6.6	27
151	Complex catalysts from self-repairing ensembles to highly reactive air-based oxidation systems. Comptes Rendus Chimie, 2007, 10, 305-312.	0.2	27
	Insights into Photoinduced Electron Transfer Between [Ru(mptpy) ₂] ⁴⁺ (mptpy) Tj ETQ		
152	Computational and Experimental Studies. Journal of Physical Chemistry A, 2010, 114, 6284-6297.	1.1	27
153	Insights into the Mechanism of O ₂ Formation and Release from the Mn ₄ O ₄ L ₆ "Cubane―Cluster. Journal of Physical Chemistry A, 2010, 114, 11417-11424.	1.1	27
154	Internal Degrees of Freedom, Structural Motifs, and Conformational Energetics of the 5â€~-Deoxyadenosyl Radical: Implications for Function in Adenosylcobalamin-Dependent Enzymes. A Computational Study. Journal of the American Chemical Society, 2003, 125, 570-579.	6.6	26
155	Di-Palladium Complexes are Active Catalysts for Mono-N-Protected Amino Acid-Accelerated Enantioselective C–H Functionalization. ACS Catalysis, 2019, 9, 11386-11397.	5.5	26
156	A Density Functional Study of the Completion of the Methane Monooxygenase Catalytic Cycle. Methanol Complex to MMOH Resting State. Journal of Physical Chemistry B, 2001, 105, 8452-8460.	1.2	25
157	A Density Functional Study of Possible Intermediates of the Reaction of Dioxygen Molecule with Nonheme Iron Complexes. 2. "Water-Assisted―Model Studies. Journal of Physical Chemistry B, 2001, 105, 4453-4463.	1.2	25
158	Versatile and Cooperative Reactivity of a Triruthenium Polyhydride Cluster. A Computational Study. Journal of the American Chemical Society, 2003, 125, 9910-9911.	6.6	25
159	A DFT study of the mechanism of Ni superoxide dismutase (NiSOD): Role of the active site cysteine-6 residue in the oxidative half-reaction. Journal of Computational Chemistry, 2006, 27, 1438-1445.	1.5	25
160	Insight into Mechanistic Features of Ruthenium(II)–Pybox-Catalyzed C–H Amination. Organometallics, 2012, 31, 4950-4961.	1.1	25
161	Can Donor Ligands Make Pd(OAc) ₂ a Stronger Oxidant? Access to Elusive Palladium(II) Reduction Potentials and Effects of Ancillary Ligands via Palladium(II)/Hydroquinone Redox Equilibria. Journal of the American Chemical Society, 2020, 142, 19678-19688.	6.6	25
162	Catalytic Triple Bond Activation and Vinylâ~'Vinyl Reductive Coupling by Pt(IV) Complexes. A Density Functional Study. Organometallics, 2001, 20, 1652-1667.	1.1	24

#	Article	IF	CITATIONS
163	An Inorganic Chromophore Based on a Molecular Oxide Supported Metal Carbonyl Cluster: [P2W17O61{Re(CO)3}3{ORb(H2O)}(μ3-OH)]9–. Inorganic Chemistry, 2013, 52, 13490-13495.	1.9	24
164	Transition Metal Substitution Effects on Metal-to-Polyoxometalate Charge Transfer. Inorganic Chemistry, 2016, 55, 4308-4319.	1.9	24
165	Skeletal Rearrangement in the Trinuclearnido-Ruthenacyclopentadiene Complexes:Â Theoretical and Experimental Studies. Organometallics, 2003, 22, 1718-1727.	1.1	23
166	Ditantalum Dinitrogen Complex: Reaction of H ₂ Molecule with "End-on-Bridged― [Ta ^{IV}] ₂ (μ-Î ¹ :Î ¹ .N ₂) and Bis(μ-nitrido) [Ta ^V] ₂ (μ-N) ₂ Complexes. Inorganic Chemistry, 2011, 50, 9481-9490.	1.9	23
167	Can bis(imino)pyridine iron, (PDI)FeL1L2, complexes catalyze C–H bond functionalization?. Chemical Science, 2013, 4, 3758.	3.7	23
168	A Hybrid Quantum Mechanical Approach: Intimate Details of Electron Transfer between Type-I CdSe/ZnS Quantum Dots and an Anthraquinone Molecule. Journal of Physical Chemistry B, 2015, 119, 7651-7658.	1.2	23
169	Unveiling the Role of Base and Additive in the Ullmann-Type of Arene-Aryl C–C Coupling Reaction. ACS Catalysis, 2018, 8, 4829-4837.	5.5	23
170	Correlated Multimodal Approach Reveals Key Details of Nerve-Agent Decomposition by Single-Site Zr-Based Polyoxometalates. Journal of Physical Chemistry Letters, 2019, 10, 2295-2299.	2.1	23
171	Predictive Model for the [Rh ₂ (esp) ₂]-Catalyzed Intermolecular C(sp ³)–H Bond Insertion of β-Carbonyl Ester Carbenes: Interplay between Theory and Experiment. ACS Catalysis, 2019, 9, 4526-4538.	5.5	23
172	A Density Functional Study of Possible Intermediates of the Reaction of Dioxygen Molecule with Non-Heme Iron Complexes. 1. N-Side versus O-Side Mechanism with Water-Free Model. Journal of Physical Chemistry B, 2001, 105, 8616-8628.	1.2	22
173	Protein effects on the O2binding to the active site of the methane monooxygenase: ONIOM studies. International Journal of Quantum Chemistry, 2004, 99, 972-980.	1.0	22
174	Cooperative Pull and Push Effects on the Oâ^'O Bond Cleavage in Acylperoxo Complexes of [(Salen)MnIIIL]:Â Ensuring Formation of Manganese(V) Oxo Species. Inorganic Chemistry, 2005, 44, 306-315.	1.9	22
175	New complexes and materials for O2-based oxidations. Journal of Molecular Catalysis A, 2006, 251, 234-238.	4.8	22
176	[12]Annulene Gemini Surfactants: Structure and Selfâ€Assembly. Angewandte Chemie - International Edition, 2007, 46, 5889-5891.	7.2	22
177	Multi-Tasking POM Systems. Frontiers in Chemistry, 2018, 6, 365.	1.8	22
178	Theoretical Studies of the Reaction Mechanisms of Dimethylsulfide and Dimethylselenide with Peroxynitrite. Journal of Physical Chemistry A, 2003, 107, 5862-5873.	1.1	21
179	Mechanistic Aspects of Dinitrogen Hydrogenation Catalyzed by the Geometry-Constrained Zirconium and Titanium Complexes:  Computational Studies. Organometallics, 2007, 26, 5978-5986.	1.1	21
180	Adsorption and Dissociation of CO <i></i> (<i>x </i> = 1, 2) on W(111) Surface :  A Computational Study. Journal of Physical Chemistry C, 2008, 112, 3341-3348.	1.5	21

#	Article	IF	CITATIONS
181	Multimodal Characterization of Materials and Decontamination Processes for Chemical Warfare Protection. ACS Applied Materials & Interfaces, 2020, 12, 14721-14738.	4.0	21
182	Theoretical Study of the Mechanism of Oxidative Addition of Allylâ^'Ammonium and â^'Iminium Salts to Low-Valent Metal Complexes. Rationalization of Selective Câ^'N and Nâ^'H Bond Activation. Organometallics, 2000, 19, 4402-4415.	1.1	20
183	Reactivity and Selectivity Controlling Factors in the Pd/Dialkylbiarylphosphine-Catalyzed C–C Cleavage/Cross-Coupling of an N-Fused Bicyclo α-Hydroxy-β-Lactam. Journal of the American Chemical Society, 2020, 142, 21140-21152.	6.6	20
184	Key Mechanistic Features of the Silver(I)-Mediated Deconstructive Fluorination of Cyclic Amines: Multistate Reactivity versus Single-Electron Transfer. Journal of the American Chemical Society, 2021, 143, 3889-3900.	6.6	20
185	Theoretical Prediction of a New Dinitrogen Reduction Process:  Utilization of Four Dihydrogen Molecules and a Zr2Pt2 Cluster. Journal of Physical Chemistry B, 2004, 108, 10012-10018.	1.2	19
186	Axial Ligand and Solvent Effects on the Oâ^'O Bond Activation in Acylperoxo Complexes of [(Salen)MnIIIL]:Â MnIVversus MnVOxo Species. Journal of Physical Chemistry B, 2004, 108, 3845-3854.	1.2	19
187	Bis(4′-(4-pyridyl)-2,2′:6′,2′′-terpyridine)ruthenium(ii) complexes and their N-alkylated derivatives in catalytic light-driven water oxidation. RSC Advances, 2013, 3, 20647.	1.7	18
188	Reaction Mechanism of Nerve-Agent Hydrolysis with the Cs8Nb6O19 Lindqvist Hexaniobate Catalyst. Journal of Physical Chemistry C, 2016, 120, 16822-16830.	1.5	18
189	Impact of ambient gases on the mechanism of [Cs8Nb6O19]-promoted nerve-agent decomposition. Chemical Science, 2018, 9, 2147-2158.	3.7	18
190	Ab initio molecular orbital study of oxidative addition of H2 and CH4 to the RhCl(CO)(PH3)2 complex. Journal of Organometallic Chemistry, 1995, 504, 93-105.	0.8	17
191	Computational Studies of Nucleophilic Attack and Protonation of Electron-Deficient Benzoheterocycle Triosmium Clusters. Inorganic Chemistry, 2006, 45, 4963-4973.	1.9	17
192	Why [(η5-C5MenH5-n)2Ti]2(μ2,η2,η2-N2) Can Not Add a H2Molecule to the Side-On-Coordinated N2while Its Zr and Hf Analogues Can? Insights from Computational Studies. Inorganic Chemistry, 2007, 46, 2709-2715.	1.9	17
193	Generality and Strength of Transition Metal β-Effects. Journal of the American Chemical Society, 2018, 140, 10612-10618.	6.6	17
194	Does the Tetrahydroborate Species AuBH4 Exist? Ab Initio MO Study of the Structure and Stability of CuBH4, AgBH4, and AuBH4. Organometallics, 1995, 14, 3327-3334.	1.1	16
195	Reaction of H2 with a Binuclear Zirconium Dinitrogen Complex â ^{-,} Evaluation of Theoretical Models and Hybrid Approaches. Journal of Chemical Theory and Computation, 2006, 2, 1298-1316.	2.3	16
196	Computational Studies of Transition Metal Selectivity of Octapeptide Repeat Region of Prion Protein (PrP). Journal of Physical Chemistry B, 2010, 114, 1127-1135.	1.2	16
197	Roles of Base in the Pd-Catalyzed Annulative Chlorophenylene Dimerization. ACS Catalysis, 2020, 10, 3059-3073.	5.5	16
198	Pyochelin Biosynthetic Metabolites Bind Iron and Promote Growth in <i>Pseudomonads</i> Demonstrating Siderophore-like Activity. ACS Infectious Diseases, 2021, 7, 544-551.	1.8	16

#	Article	IF	CITATIONS
199	Tafel Slope Analyses for Homogeneous Catalytic Reactions. Catalysts, 2021, 11, 87.	1.6	16
200	Density Functional Study of the Roles of Chemical Composition of Di-Transition-Metal-Substituted Î ³ -Keggin Polyoxometalate Anions. Journal of Physical Chemistry B, 2006, 110, 5230-5237.	1.2	15
201	The Mechanisms of the Reactions of W and W+with COx(x= 1, 2): A Computational Studyâ€. Journal of Physical Chemistry A, 2007, 111, 6665-6673.	1.1	15
202	Potential Energy Surfaces of Transition-Metal-Catalyzed Chemical Reactions. Advances in Chemical Physics, 2007, , 61-128.	0.3	15
203	Biologically Inspired Total Synthesis of Ulbactin F, an Iron-Binding Natural Product. Organic Letters, 2018, 20, 5922-5926.	2.4	15
204	Mechanistic Insights into the Aerobic Copper(I)-Catalyzed Cross-Coupling of S-Acyl Thiosalicylamide Thiol Esters and Boronic Acids. Organometallics, 2012, 31, 7958-7968.	1.1	14
205	Synthesis of [3a,7a]-Dihydroindoles by a Tandem Arene Cyclopropanation/3,5-Sigmatropic Rearrangement Reaction. Journal of Organic Chemistry, 2018, 83, 7939-7949.	1.7	14
206	Computational insights to the mechanism of alkene epoxidation by manganese-based catalysts in the presence of bicarbonate. Computational and Theoretical Chemistry, 2009, 903, 115-122.	1.5	13
207	Quantum Confinement Theory of Auger-Assisted Biexciton Recombination Dynamics in Type-I and Quasi Type-II Quantum Dots. Journal of Physical Chemistry C, 2018, 122, 18742-18750.	1.5	13
208	Metallaboranes with Group 8 and 9 Transition Metals. Is Accurateab initioMolecular Orbital Calculation of Structure, Stability, and NMR Chemical Shifts Possible?. Bulletin of the Chemical Society of Japan, 1993, 66, 3259-3270.	2.0	12
209	Peroxynitrite Reactions with Dimethylsulfide and Dimethylselenide:  An Experimental Study. Journal of Physical Chemistry A, 2004, 108, 289-294.	1.1	12
210	Zeolite-Supported Palladium Tetramer and Its Reactivity toward H ₂ Molecules: Computational Studies. Journal of Physical Chemistry A, 2008, 112, 5973-5983.	1.1	12
211	Key mechanistic insights into the intramolecular C-H bond amination and double bond aziridination in sulfamate esters catalyzed by dirhodium tetracarboxylate complexes. Journal of Organometallic Chemistry, 2018, 867, 183-192.	0.8	12
212	Comparison of 1,2-Diarylcyclopropanecarboxylates with 1,2,2-Triarylcyclopropanecarboxylates as Chiral Ligands for Dirhodium-Catalyzed Cyclopropanation and C–H Functionalization. Journal of Organic Chemistry, 2020, 85, 12199-12211.	1.7	12
213	Unified Mechanistic Concept of the Copper-Catalyzed and Amide-Oxazoline-Directed C(sp ²)–H Bond Functionalization. ACS Catalysis, 2021, 11, 12620-12631.	5.5	12
214	Hydrogen Scrambling in [(C5Me5)Os(dmpm)(CH3)H]+. A Density Functional and ONIOM Study. Organometallics, 2002, 21, 555-564.	1.1	11
215	Parameterization of Reactive Force Field: Dynamics of the [Nb6O19Hx](8–x)– Lindqvist Polyoxoanion in Bulk Water. Journal of Physical Chemistry A, 2013, 117, 6967-6974.	1.1	11
216	Mechanism of Permanganate-Promoted Dihydroxylation of Complex Diketopiperazines: Critical Roles of Counter-cation and Ion-Pairing. Journal of the American Chemical Society, 2018, 140, 13375-13386.	6.6	11

#	Article	IF	CITATIONS
217	Roles of Ligand and Oxidant in Pd(II)-Catalyzed and Ligand-Enabled C(sp ³)–H Lactonization in Aliphatic Carboxylic Acid: Mechanistic Studies. ACS Catalysis, 2022, 12, 4848-4858.	5.5	11
218	Ab Initio MO Study of Cluster Rearrangements in Pentagonal Pyramidal Clusters: B6H10 Borane and [(IrB5H8)(CO)(PH3)2] Metallaborane. Journal of the American Chemical Society, 1994, 116, 3932-3942.	6.6	10
219	Density Functional Study of Platinum(II)-Mediated Bicyclization of 1,6-Dienylphenols. Organometallics, 2007, 26, 2540-2549.	1.1	10
220	Electronic reorganization: Origin of sigma trans promotion effect. Journal of Computational Chemistry, 2007, 28, 423-441.	1.5	10
221	A density functional study of geometry and electronic structures of [(SiO4)(MIII)2(OH)2W10O32]4â^', M=Mo, Ru and Rh. Journal of Molecular Catalysis A, 2007, 262, 227-235.	4.8	10
222	Adsorption and Dissociation of the HCl and Cl ₂ Molecules on W(111) Surface: A Computational Study. Journal of Physical Chemistry C, 2008, 112, 12342-12348.	1.5	10
223	Computational Study on Kinetics and Mechanisms of Unimolecular Decomposition of Succinic Acid and Its Anhydride. Journal of Physical Chemistry A, 2008, 112, 6621-6629.	1.1	10
224	Density Functional Studies of the Adsorption and Dissociation of NO _{<i>x</i>} (<i>x</i> = 1,) Tj ETQqQ	0 0 rgBT 1.5	/Overlock I
225	An Activeâ€6ite Sulfonate Group Creates a Fast Water Oxidation Electrocatalyst That Exhibits High Activity in Acid. Angewandte Chemie - International Edition, 2021, 60, 1540-1545.	7.2	10
226	Ab initio molecular orbital study of structure and NMR 11B chemical shifts of Lewis base adducts of CO, NH3, PF3, and PH3 with small nido-boranes, B3H7 and B4H8. Chemical Physics Letters, 1993, 214, 69-76.	1.2	9
227	Reactivity of Ebtellur Derivatives with the Peroxynitrite Anion:  Comparison with Their Ebselen Analogues. Journal of Physical Chemistry A, 2003, 107, 5631-5639.	1.1	9
228	The role of the heteroatom (XÂ=ÂSiIV, PV, and SVI) on the reactivity of {γ-[(H2O)RuIII(μ-OH)2RuIII(H2O)][X n+W10O36]}(8â^'n)â^' with the O2 molecule. Theoretical Chemistry Accounts, 2011, 130, 197-207.	0.5	9
229	Rh ^{II} atalyzed β (sp ²)â~'H Alkylation of Enol Ethers, Enamides and Enecarbamates with αâ€Điazo Dicarbonyl Compounds. Chemistry - A European Journal, 2017, 23, 1129-1135.	1.7	9
230	Mechanistic details of the cobalt-mediated dehydrogenative dimerization of aminoquinoline-directed benzamides. Chemical Science, 2020, 11, 6085-6096.	3.7	9
231	Reactivity of [1,2-Benzisotellurazol-3(2H)-one] with Peroxynitrous Acid:  Comparison with Ebselen Analogues. Journal of Physical Chemistry A, 2003, 107, 9984-9990.	1.1	8
232	Mechanisms of the Reactions of W and W+ with NOx (x = 1, 2):  A Computational Study. Journal of Physical Chemistry A, 2007, 111, 982-991.	1.1	8
233	Key mechanistic details of paraoxon decomposition by polyoxometalates: Critical role of para-nitro substitution. Chemical Physics, 2019, 518, 30-37.	0.9	8
234	Influence of Aryl Substituents on the Alignment of Ligands in the Dirhodium Tetrakis(1,2,2â€Triarylcyclopropane―carboxylate) Catalysts. ChemCatChem, 2021, 13, 174-179.	1.8	8

#	Article	IF	CITATIONS
235	Unconventional mechanism and selectivity of the Pd-catalyzed C–H bond lactonization in aromatic carboxylic acid. Nature Communications, 2022, 13, 315.	5.8	8
236	A solvent-free solid catalyst for the selective and color-indicating ambient-air removal of sulfur mustard. Communications Chemistry, 2021, 4, .	2.0	7
237	Light-Promoted Dearomative Cross-Coupling of Heteroarenium Salts and Aryl Iodides via Nickel Catalysis. ACS Catalysis, 2022, 12, 1818-1829.	5.5	7
238	Structurally Precise Two-Transition-Metal Water Oxidation Catalysts: Quantifying Adjacent 3d Metals by Synchrotron X-Radiation Anomalous Dispersion Scattering. Inorganic Chemistry, 2022, 61, 6252-6262.	1.9	7
239	Density functional studies of the electronic and geometric structures of Pt3+, Pt3O+, Pt3O2+ and Pt3CH4+. Computational and Theoretical Chemistry, 2002, 586, 35-46.	1.5	6
240	Theoretical Study of the Structure and Properties of [(η5-C5Me4H)2Zr]2(μ2,η2,η2-N2). Journal of Chemical Theory and Computation, 2006, 2, 336-341.	2.3	6
241	Effects of Competitive Active-Site Ligand Binding on Proton- and Electron-Transfer Properties of the [Co4(H2O)2(PW9O34)2]10â^' Polyoxometalate Water Oxidation Catalyst. Journal of Cluster Science, 2017, 28, 839-852.	1.7	6
242	Enhanced intersystem crossing of boron dipyrromethene by TEMPO radical. Journal of Chemical Physics, 2020, 153, 154201.	1.2	6
243	Nanoscale TiO ₂ Protection Layer Enhances the Built-In Field and Charge Separation Performance of GaP Photoelectrodes. Nano Letters, 2021, 21, 8017-8024.	4.5	6
244	The roles of steric and electronic effects in the 2-hydroxy-2′-nitrodiphenyl sulfones to 2-(o-nitrophenoxy)-benzene-sulfinic acids rearrangement (Smiles). Computational study. Computational and Theoretical Chemistry, 2004, 679, 45-52.	1.5	5
245	A comparative study of various computational approaches in calculating the structure of pyridoxal 5′-phosphate (PLP)-dependent β-Iyase protein. The importance of protein environment. Journal of Computational Chemistry, 2005, 26, 443-446.	1.5	5
246	lon-pairing in polyoxometalate chemistry: impact of fully hydrated alkali metal cations on properties of the keggin [PW12O40]3â^' anion. Dalton Transactions, 2020, 49, 11170-11178.	1.6	5
247	Sequential Norrish–Yang Cyclization and C–C Cleavage/Cross-Coupling of a [4.1.0] Fused Saturated Azacycle. Journal of Organic Chemistry, 2021, 86, 12436-12442.	1.7	5
248	An experimental and density functional study of the Sb–C bond activation and organo-Rh bond formation from the spontaneous decay of [RhCl3(SbPh3)3]. Polyhedron, 2009, 28, 3675-3684.	1.0	4
249	Structural Modification of TiO ₂ Surfaces in Bulk Water and Binding Motifs of a Functionalized C ₆₀ on TiO ₂ Anatase and Rutile Surfaces in Vacuo and in Water: Molecular Dynamics Studies. Journal of Physical Chemistry C, 2012, 116, 20937-20948.	1.5	4
250	An Infinite Order Discrete Variable Representation of an Effective Mass Hamiltonian: Application to Exciton Wave Functions in Quantum Confined Nanostructures. Journal of Chemical Theory and Computation, 2014, 10, 3409-3416.	2.3	4
251	An All-Atom Theory of Electron Transfer at Nanocrystal/Molecule Interfaces: A Hybrid LCAO/DFT Approach. Journal of Physical Chemistry C, 2021, 125, 5116-5126.	1.5	4
252	Computational Study of Key Mechanistic Details for a Proposed Copper (I)-Mediated Deconstructive Fluorination of N-Protected Cyclic Amines. Topics in Catalysis, 2022, 65, 418-432.	1.3	4

#	Article	IF	CITATIONS
253	A bulk adjusted linear combination of atomic orbitals (BAâ€LCAO) approach for nanoparticles. Journal of Computational Chemistry, 2019, 40, 212-221.	1.5	3
254	Polyniobate Nanothreads for Decomposition of the Nerve Agent Simulant Dimethyl Chlorophosphate. ACS Applied Nano Materials, 2021, 4, 5649-5654.	2.4	3
255	An alternative mechanism of BH2SH formation in the reaction of B2H6 with SH2: concerted elimination of BH3 and H2 from H2S ·B2H6. Ab initio MO study. Chemical Physics Letters, 1993, 216, 313-318.	1.2	2
256	Theoretical Studies of the N2 Cleavage by Three-Coordinate Group 6 Complexes ML3. ACS Symposium Series, 1999, , 198-207.	0.5	2
257	Modulating electronic coupling at the quantum dot/molecule interface by wavefunction engineering. Journal of Chemical Physics, 2019, 150, 124704.	1.2	2
258	Hydrogenâ€Bonding as a Factor to Determine the Regioselectivity for Pdâ€mediated Câ^'H Activation of Pyridine. ChemCatChem, 2021, 13, 1201-1206.	1.8	2
259	Keiji Morokuma. Journal of Physical Chemistry A, 2018, 122, 880-881.	1.1	0