
Traian Popa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7736462/publications.pdf Version: 2024-02-01

Τραιανι Ρωρα

#	Article	IF	CITATIONS
1	Consensus Paper: Towards a Systems-Level View of Cerebellar Function: the Interplay Between Cerebellum, Basal Ganglia, and Cortex. Cerebellum, 2017, 16, 203-229.	1.4	321
2	Current Opinions and Areas of Consensus on the Role of the Cerebellum in Dystonia. Cerebellum, 2017, 16, 577-594.	1.4	184
3	Changes in coordination of postural control during dynamic stance in chronic low back pain patients. Gait and Posture, 2006, 24, 349-355.	0.6	181
4	Wearable technology in stroke rehabilitation: towards improved diagnosis and treatment of upper-limb motor impairment. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 142.	2.4	145
5	Transcranial magnetic stimulation of the brain: What is stimulated? – A consensus and critical position paper. Clinical Neurophysiology, 2022, 140, 59-97.	0.7	124
6	Consensus Paper: Experimental Neurostimulation of the Cerebellum. Cerebellum, 2019, 18, 1064-1097.	1.4	120
7	Cerebellar rTMS stimulation may induce prolonged clinical benefits in essential tremor, and subjacent changes in functional connectivity: An open label trial. Brain Stimulation, 2013, 6, 175-179.	0.7	113
8	Cerebellar Processing of Sensory Inputs Primes Motor Cortex Plasticity. Cerebral Cortex, 2013, 23, 305-314.	1.6	113
9	Long-lasting inhibition of cerebellar output. Brain Stimulation, 2010, 3, 161-169.	0.7	106
10	Early, severe and bilateral loss of LTP and LTD-like plasticity in motor cortex (M1) in de novo Parkinson's disease. Clinical Neurophysiology, 2012, 123, 822-828.	0.7	100
11	Defective cerebellar control of cortical plasticity in writer's cramp. Brain, 2013, 136, 2050-2062.	3.7	94
12	Adaptive changes in postural strategy selection in chronic low back pain. Experimental Brain Research, 2007, 177, 411-418.	0.7	90
13	Disruption in cerebellar and basal ganglia networks during a visuospatial task in cervical dystonia. Movement Disorders, 2017, 32, 757-768.	2.2	88
14	Intrinsic signature of essential tremor in the cerebello-frontal network. Brain, 2015, 138, 2920-2933.	3.7	87
15	Acute dopamine boost has a negative effect on plasticity of the primary motor cortex in advanced Parkinson's disease. Brain, 2012, 135, 2074-2088.	3.7	76
16	Congenital mirror movements: a clue to understanding bimanual motor control. Journal of Neurology, 2011, 258, 1911-1919.	1.8	67
17	Cerebellar Sensory Processing Alterations Impact Motor Cortical Plasticity in Parkinson's Disease: Clues from Dyskinetic Patients. Cerebral Cortex, 2014, 24, 2055-2067.	1.6	66
18	Cortico-motoneuronal output to intrinsic hand muscles is differentially influenced by static changes in shoulder positions. Experimental Brain Research, 2005, 164, 500-504.	0.7	65

TRAIAN POPA

#	Article	IF	CITATIONS
19	Cortisol-induced effects on human cortical excitability. Brain Stimulation, 2010, 3, 131-139.	0.7	65
20	RAD51 deficiency disrupts the corticospinal lateralization of motor control. Brain, 2013, 136, 3333-3346.	3.7	63
21	Brain dynamic neurochemical changes in dystonic patients: A magnetic resonance spectroscopy study. Movement Disorders, 2013, 28, 201-209.	2.2	56
22	The reliability of commonly used electrophysiology measures. Brain Stimulation, 2017, 10, 1102-1111.	0.7	53
23	Orthostatic tremor: a cerebellar pathology?. Brain, 2016, 139, 2182-2197.	3.7	49
24	Repetitive Transcranial Magnetic Stimulation to Supplementary Motor Area in Refractory Obsessive-Compulsive Disorder Treatment: a Sham-Controlled Trial. International Journal of Neuropsychopharmacology, 2016, 19, pyw025.	1.0	48
25	The supplementary motor area modulates interhemispheric interactions during movement preparation. Human Brain Mapping, 2019, 40, 2125-2142.	1.9	44
26	Cerebellum in Levodopa-Induced Dyskinesias: The Unusual Suspect in the Motor Network. Frontiers in Neurology, 2014, 5, 157.	1.1	42
27	The Neurophysiological Features of Myoclonus-Dystonia and Differentiation From Other Dystonias. JAMA Neurology, 2014, 71, 612.	4.5	40
28	Cerebellar Influence on Motor Cortex Plasticity: Behavioral Implications for Parkinsonââ,¬â"¢s Disease. Frontiers in Neurology, 2014, 5, 68.	1.1	38
29	Electroencephalographic spectral power in writer's cramp patients: Evidence for motor cortex malfunctioning during the cramp. NeuroImage, 2005, 27, 706-714.	2.1	28
30	Abnormal cerebellar processing of the neck proprioceptive information drives dysfunctions in cervical dystonia. Scientific Reports, 2018, 8, 2263.	1.6	28
31	Cerebellar brain inhibition in the target and surround muscles during voluntary tonic activation. European Journal of Neuroscience, 2016, 43, 1075-1081.	1.2	27
32	Intracortical Inhibition and Surround Inhibition in the Motor Cortex: A TMS-EEG Study. Frontiers in Neuroscience, 2019, 13, 612.	1.4	25
33	Age-related decline in the responsiveness of motor cortex to plastic forces reverses with levodopa or cerebellar stimulation. Neurobiology of Aging, 2014, 35, 2541-2551.	1.5	24
34	Cortical plasticity and levodopa-induced dyskinesias in Parkinson's disease: Connecting the dots in a multicomponent network. Clinical Neurophysiology, 2017, 128, 992-999.	0.7	23
35	Factors influencing the relation between corticospinal output and muscle force during voluntary contractions. European Journal of Neuroscience, 2007, 25, 3469-3475.	1.2	22
36	Relation between isometric muscle force and surface EMG in intrinsic hand muscles as function of the arm geometry. Brain Research, 2007, 1163, 79-85.	1.1	21

TRAIAN POPA

#	Article	IF	CITATIONS
37	The role of the inferior parietal lobule in writer's cramp. Brain, 2020, 143, 1766-1779.	3.7	21
38	Tuning Eye-Gaze Perception by Transitory STS Inhibition. Cerebral Cortex, 2016, 26, 2823-2831.	1.6	19
39	The effect of frontoparietal paired associative stimulation on decision-making and working memory. Cortex, 2019, 117, 266-276.	1.1	19
40	Motor cortex plasticity can indicate vulnerability to motor fluctuation and high L-DOPA need in drug-naÃ ⁻ ve Parkinson's disease. Parkinsonism and Related Disorders, 2017, 35, 55-62.	1.1	15
41	Cerebello ortical Control of Tremor Rhythm and Amplitude in Parkinson's Disease. Movement Disorders, 2021, 36, 1727-1729.	2.2	15
42	Autism, social cognition and superior temporal sulcus. Open Journal of Psychiatry, 2013, 03, 46-55.	0.2	14
43	Effects of posture-related changes in motor cortical output on central oscillatory activity of pathological origin in humans. Brain Research, 2008, 1223, 65-72.	1.1	11
44	Taking the brakes off the learning curve. Human Brain Mapping, 2017, 38, 1676-1691.	1.9	11
45	Modulation of Resting Connectivity Between the Mesial Frontal Cortex and Basal Ganglia. Frontiers in Neurology, 2019, 10, 587.	1.1	11
46	Cortico-muscular coupling in a patient with postural myoclonus. Neuroscience Letters, 2004, 366, 259-263.	1.0	8
47	Dynamic changes in cortical and spinal activities with different representations of isometric motor actions and efforts. Brain Stimulation, 2008, 1, 33-43.	0.7	8
48	Feasibility of home-based, self-applied transcranial direct current stimulation to enhance motor learning in middle-aged and older adults. Brain Stimulation, 2020, 13, 247-249.	0.7	7
49	Anticipatory control of impending postural perturbation in elite springboard divers. European Journal of Applied Physiology, 2008, 104, 1007-1011.	1.2	6
50	Reply: A single session of cerebellar theta burst stimulation does not alter writing performance in writer's cramp. Brain, 2015, 138, e356-e356.	3.7	5
51	Dissociable roles of preSMA in motor sequence chunking and hand switching—a TMS study. Journal of Neurophysiology, 2016, 116, 2637-2646.	0.9	5
52	Severity of Writer's Cramp is Related to Faulty Motor Preparation. Cerebral Cortex, 2018, 28, 3564-3577.	1.6	3
53	Parietal conditioning enhances motor surround inhibition. Brain Stimulation, 2020, 13, 447-449.	0.7	3
54	Low-frequency transcranial magnetic stimulation of the mesio-frontal cortex modulates its connectivity with basal ganglia. Brain Stimulation, 2017, 10, 488.	0.7	1

Traian Popa

#	Article	IF	CITATIONS
55	Replicable effect of cortical-paired associative stimulation on response inhibition as a function of age. Brain Stimulation, 2021, 14, 788-789.	0.7	1
56	Plastic responsiveness of motor cortex to paired associative stimulation depends on cerebellar input. Clinical Neurophysiology, 2021, 132, 2493-2502.	0.7	1
57	Depotentiation of associative plasticity is intact in Parkinson's disease with mild dyskinesia. Parkinsonism and Related Disorders, 2022, 99, 16-22.	1.1	1
58	Reply: Congenital mirror movements: lack of decussation of pyramids Mirror movement: from physiopathology to treatment perspectives. Brain, 2014, 137, e293-e293.	3.7	0