
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7736166/publications.pdf Version: 2024-02-01

MEDCEDES TADAVILLO

#	Article	IF	CITATIONS
1	Pressure-Driven Metallization in Hafnium Diselenide. Inorganic Chemistry, 2021, 60, 1746-1754.	4.0	8
2	Highs and Lows of Bond Lengths: Is There Any Limit?. Angewandte Chemie, 2021, 133, 17165-17173.	2.0	5
3	Highs and Lows of Bond Lengths: Is There Any Limit?. Angewandte Chemie - International Edition, 2021, 60, 17028-17036.	13.8	13
4	Theoretical (DFT) and experimental (Raman and FTIR) spectroscopic study on communic acids, main components of fossil resins. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 224, 117405.	3.9	8
5	Linear, Non-Conjugated Cyclic and Conjugated Cyclic Paraphenylene under Pressure. Molecules, 2019, 24, 3496.	3.8	3
6	Chemical pressure–chemical knowledge: squeezing bonds and lone pairs within the valence shell electron pair repulsion model. Physical Chemistry Chemical Physics, 2019, 21, 12585-12596.	2.8	12
7	Molecules under Pressure: The Case of [<i>n</i>]Cycloparaphenylenes. Chemistry of Materials, 2019, 31, 6443-6452.	6.7	5
8	Mechanochemistry in [6]Cycloparaphenylene: A Combined Raman Spectroscopy and Density Functional Theory Study. ChemPhysChem, 2018, 19, 1903-1916.	2.1	9
9	Infrared spectroscopic study of the formation of fossil resin analogs with temperature using trans-communic acid as precursor. Microchemical Journal, 2018, 141, 294-300.	4.5	4
10	Highâ€Pressure Chemistry and the Mechanochemical Polymerization of [5] ycloâ€ <i>p</i> â€phenylene. Chemistry - A European Journal, 2017, 23, 16593-16604.	3.3	10
11	Pressure as driving force in the formation of Fossil Resins: Pressure Induced Changes intrans-Communic Acid studied by Raman Spectroscopy. Journal of Physics: Conference Series, 2017, 950, 042052.	0.4	0
12	Morphological changes in carbon nanohorns under stress: a combined Raman spectroscopy and TEM study. RSC Advances, 2016, 6, 49543-49550.	3.6	36
13	The Raman fingerprint of cyclic conjugation: the case of the stabilization of cations and dications in cycloparaphenylenes. Chemical Science, 2016, 7, 3494-3499.	7.4	21
14	Evidence of low-density water to high-density water structural transformation in milk during high-pressure processing. Innovative Food Science and Emerging Technologies, 2016, 38, 238-242.	5.6	8
15	From linear to cyclic oligoparaphenylenes: electronic and molecular changes traced in the vibrational Raman spectra and reformulation of the bond length alternation pattern. Physical Chemistry Chemical Physics, 2016, 18, 11683-11692.	2.8	30
16	Tunneling phenomena in aligned multi-walled carbon nanotube sheets: conductivity and Raman correlations. Materials Research Express, 2014, 1, 045603.	1.6	2
17	Stressâ€dependent correlations for resonant Raman bands in graphite with defects. Journal of Raman Spectroscopy, 2014, 45, 476-480.	2.5	16
18	Properties of Sizeable [<i>n</i>]Cycloparaphenylenes as Molecular Models of Singleâ€Wall Carbon Nanotubes Elucidated by Raman Spectroscopy: Structural and Electronâ€Transfer Responses under Mechanical Stress. Angewandte Chemie - International Edition, 2014, 53, 7033-7037.	13.8	77

#	Article	IF	CITATIONS
19	Diradicals acting through diamagnetic phenylene vinylene bridges: Raman spectroscopy as a probe to characterize spin delocalization. Journal of Chemical Physics, 2014, 140, 164903.	3.0	6
20	Effects of high pressure on unsaturated fatty acids. High Pressure Research, 2014, 34, 428-433.	1.2	4
21	Role of Water Structure on the High Pressure Micellization and Phase Transformations of Sodium Dodecanoate Aqueous Solutions. Langmuir, 2014, 30, 7343-7352.	3.5	3
22	Modeling graphite under stress: Equations of state, vibrational modes, and interlayer friction. Physical Review B, 2014, 90, .	3.2	7
23	Probing the Stress Effect on the Electronic Structure of Graphite by Resonant Raman Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 25132-25140.	3.1	10
24	Chameleon-like behaviour of cyclo[n]paraphenylenes in complexes with C ₇₀ : on their impressive electronic and structural adaptability as probed by Raman spectroscopy. Faraday Discussions, 2014, 173, 157-171.	3.2	30
25	Raman spectroscopic study of the formation of fossil resin analogues. Journal of Raman Spectroscopy, 2014, 45, 1230-1235.	2.5	17
26	3D Raman mapping of uniaxially loaded 6H‣iC crystals. Journal of Raman Spectroscopy, 2013, 44, 758-762.	2.5	10
27	Characterization of Salting-Out Processes during CO ₂ -Clathrate Formation Using Raman Spectroscopy: Planetological Application. Spectroscopy Letters, 2012, 45, 407-412.	1.0	5
28	An experimental device for accurate ultrasounds measurements in liquid foods at high pressure. IOP Conference Series: Materials Science and Engineering, 2012, 42, 012044.	0.6	2
29	Nonlinear strain effects in double-resonance Raman bands of graphite, graphene, and related materials. Physical Review B, 2012, 85, .	3.2	66
30	Raman modes and Grüneisen parameters of graphite under compressive biaxial stress. Carbon, 2012, 50, 4600-4606.	10.3	28
31	DFT+ <i>U</i> calculations of crystal lattice, electronic structure, and phase stability under pressure of TiO2 polymorphs. Journal of Chemical Physics, 2011, 135, 054503.	3.0	221
32	Speed of Sound in Liquid Water from (253.15 to 348.15) K and Pressures from (0.1 to 700) MPa. Journal of Chemical & Engineering Data, 2011, 56, 4800-4807.	1.9	26
33	Raman characterization of carbon materials under non-hydrostatic conditions. Carbon, 2011, 49, 973-979.	10.3	33
34	Universal compressibility behaviour of ions in ionic crystals. High Pressure Research, 2009, 29, 97-102.	1.2	4
35	Shocked materials at the intersection of experiment and simulation. Scientific Modeling and Simulation SMNS, 2008, 15, 159-186.	0.8	17
36	Graphite under non-hydrostatic conditions. High Pressure Research, 2008, 28, 583-586.	1.2	1

#	Article	IF	CITATIONS
37	Raman Spectra of Double-Wall Carbon Nanotubes under Extreme Uniaxial Stress. Nano Letters, 2008, 8, 2215-2218.	9.1	27
38	Direct measurement of the liquid 4:1 methanol–ethanol equation of state up to 5ÂGPa. High Pressure Research, 2008, 28, 637-640.	1.2	3
39	Shocked materials at the intersection of experiment and simulation. Lecture Notes in Computational Science and Engineering, 2008, , 159-186.	0.3	0
40	Thermodynamic Properties of Compressed Liquid Methanol in the Vicinity of the Freezing Line. Journal of Chemical & Engineering Data, 2007, 52, 481-486.	1.9	14
41	Light-scattering study of vibrational relaxation in liquid xylenes. Journal of Chemical Physics, 2006, 124, 014503.	3.0	2
42	Thermodynamic regularities in compressed liquids: II. The reduced bulk modulus. Journal of Physics Condensed Matter, 2006, 18, 10213-10222.	1.8	5
43	Extension of the Szigeti equations: Average longitudinal-transverse frequencies and effective charges. Physical Review B, 2006, 73, .	3.2	2
44	n-pentanol at high pressures: Rotational isomerism in the liquid phase and the liquid-solid phase transition. Journal of Chemical Physics, 2006, 124, 044508.	3.0	8
45	Raman spectroscopy of aqueous methanol solutions under pressure. High Pressure Research, 2006, 26, 407-410.	1.2	5
46	Refractive index temperature and wavelength dependencies of normal saturated fatty acids in liquid state. Experimental Thermal and Fluid Science, 2005, 29, 681-684.	2.7	12
47	Pressure tuning of the Fermi resonance in liquid methanol: Implications for the analysis of high-pressure vibrational spectroscopy experiments. Journal of Chemical Physics, 2005, 123, 214502.	3.0	21
48	Dynamic light scattering in liquid and supercooled diphenylmethane. Journal of Chemical Physics, 2004, 120, 1426-1435.	3.0	5
49	Phase transitions and hindered rotation in dimethylacetylene at high pressures probed by Raman spectroscopy. Journal of Chemical Physics, 2004, 121, 11156.	3.0	7
50	Refractive index of benzene and methyl derivatives: temperature and wavelength dependencies. Experimental Thermal and Fluid Science, 2004, 28, 887-891.	2.7	25
51	Equipo para la Determinación Experimental del Espectro de Luz Difundida por un LÃquido. Informacion Tecnologica (discontinued), 2004, 15, .	0.3	0
52	Desarrollo de un CalorÃmetro para la Determinación de la EntalpÃa de Dilución en Disoluciones Acuosas de Electrolitos. Informacion Tecnologica (discontinued), 2004, 15, .	0.3	0
53	Diamond as pressure sensor in high-pressure Raman spectroscopy using sapphire and other gem anvil cells. Journal of Raman Spectroscopy, 2003, 34, 264-270.	2.5	35
54	Thermodynamic regularities in compressed liquids: I. The thermal expansion coefficient. Journal of Physics Condensed Matter, 2003, 15, 2979-2989.	1.8	32

#	Article	IF	CITATIONS
55	Pressure as a Tool to Investigate Vibrational Fermi Resonance in Molecular Liquids: Study of Liquid Methanol up to 20 kbar by Raman Microscopy. Defect and Diffusion Forum, 2002, 208-209, 125-128.	0.4	0
56	The temperature dependence of the equation of state at high pressures revisited: a universal model for solids. Journal of Physics and Chemistry of Solids, 2002, 63, 1705-1715.	4.0	26
57	Effect of Pressure on Hydrogen Bonding in Liquid Methanol. Physical Review Letters, 2002, 89, 195504.	7.8	47
58	A dynamic light scattering study of the hypersonic relaxation in liquid toluene. Journal of Chemical Physics, 2001, 115, 4681-4688.	3.0	12
59	Aqueous solutions of tris(1,2-diaminoethane)cobalt(III) chloride and tris(1,3-diaminopropane)cobalt(III) chloride atT= 278.15 K. Enthalpy of dilution. Journal of Chemical Thermodynamics, 2001, 33, 1277-1284.	2.0	0
60	Enthalpies of Dilution of Cobalt–Amine-Type Salts in Aqueous Solutions at 25°C. Journal of Solution Chemistry, 2001, 30, 1091-1100.	1.2	0
61	Application of a new equation of state for solids. High Temperatures - High Pressures, 1998, 30, 97-103.	0.3	4
62	Universal features of the equation of state of solids from a pseudospinodal hypothesis. Physical Review B, 1996, 53, 5252-5258.	3.2	46
63	Simple equation of state for solids under compression. Physical Review B, 1996, 54, 7034-7045.	3.2	33
64	Equation of State for Representing the Thermodynamic Properties of Liquids at High Pressure. The Journal of Physical Chemistry, 1995, 99, 8856-8862.	2.9	4
65	Equation of state of liquid o-xylene at low temperatures and high pressures. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 3527-3532.	1.7	9
66	Thermophysical properties of liquid m-xylene at high pressures. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 1217-1221.	1.7	13
67	Thermodynamic behaviour of liquid p-xylene near freezing. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 3645-3649.	1.7	12