Michael L Gross

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7735959/publications.pdf

Version: 2024-02-01

89 papers

2,675 citations

218381 26 h-index 223531 46 g-index

90 all docs 90 docs citations

90 times ranked 3629 citing authors

#	Article	IF	CITATIONS
1	Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. Nature Methods, 2019, 16, 595-602.	9.0	452
2	Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications. Chemical Reviews, 2020, 120, 4355-4454.	23.0	149
3	Mass spectrometry for the biophysical characterization of therapeutic monoclonal antibodies. FEBS Letters, 2014, 588, 308-317.	1.3	123
4	Accurate mass measurements by Fourier transform mass spectrometry. Mass Spectrometry Reviews, 2005, 24, 286-309.	2.8	120
5	Mass Spectrometry-Based Fast Photochemical Oxidation of Proteins (FPOP) for Higher Order Structure Characterization. Accounts of Chemical Research, 2018, 51, 736-744.	7.6	85
6	Laserâ€Initiated Radical Trifluoromethylation of Peptides and Proteins: Application to Massâ€Spectrometryâ€Based Protein Footprinting. Angewandte Chemie - International Edition, 2017, 56, 14007-14010.	7.2	74
7	Mapping the Energetic Epitope of an Antibody/Interleukin-23 Interaction with Hydrogen/Deuterium Exchange, Fast Photochemical Oxidation of Proteins Mass Spectrometry, and Alanine Shave Mutagenesis. Analytical Chemistry, 2017, 89, 2250-2258.	3.2	72
8	Near-atomic structure of a giant virus. Nature Communications, 2019, 10, 388.	5.8	61
9	A Triterpene Glycoside from Black Cohosh that Inhibits Osteoclastogenesis by Modulating RANKL and TNFα Signaling Pathways. Chemistry and Biology, 2007, 14, 860-869.	6.2	53
10	Structural basis for neutralization of Plasmodium vivax by naturally acquired human antibodies that target DBP. Nature Microbiology, 2019, 4, 1486-1496.	5.9	52
11	Mapping the Binding Interface of VEGF and a Monoclonal Antibody Fab-1 Fragment with Fast Photochemical Oxidation of Proteins (FPOP) and Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2017, 28, 850-858.	1.2	51
12	Evolutionary fine-tuning of conformational ensembles in FimH during host-pathogen interactions. Science Advances, 2017, 3, e1601944.	4.7	50
13	The Application of Fluorineâ€Containing Reagents in Structural Proteomics. Angewandte Chemie - International Edition, 2020, 59, 5880-5889.	7.2	50
14	Mass spectrometry-based carboxyl footprinting of proteins: Method evaluation. International Journal of Mass Spectrometry, 2012, 312, 78-86.	0.7	48
15	Orthogonal Mass Spectrometry-Based Footprinting for Epitope Mapping and Structural Characterization: The IL-6 Receptor upon Binding of Protein Therapeutics. Analytical Chemistry, 2017, 89, 7742-7749.	3.2	47
16	Protein Footprinting by Carbenes on a Fast Photochemical Oxidation of Proteins (FPOP) Platform. Journal of the American Society for Mass Spectrometry, 2016, 27, 552-555.	1.2	44
17	Mass spectrometry-based cross-linking study shows that the Psb28 protein binds to cytochrome <i>b</i> ₅₅₉ in Photosystem II. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2224-2229.	3.3	42
18	PLIMSTEX: a novel mass spectrometric method for the quantification of protein–ligand interactions in solution. International Journal of Mass Spectrometry, 2005, 240, 213-220.	0.7	38

#	Article	IF	Citations
19	Epitope and Paratope Mapping of PD-1/Nivolumab by Mass Spectrometry-Based Hydrogen–Deuterium Exchange, Cross-linking, and Molecular Docking. Analytical Chemistry, 2020, 92, 9086-9094.	3.2	38
20	A novel chlorophyll protein complex in the repair cycle of photosystem II. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21907-21913.	3.3	34
21	Uncovering a membrane-distal conformation of KRAS available to recruit RAF to the plasma membrane. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24258-24268.	3.3	34
22	Application of SIMSTEX to oligomerization of insulin analogs and mutants. Journal of the American Society for Mass Spectrometry, 2006, 17, 1526-1534.	1.2	32
23	An Integrated Approach for Determining a Protein–Protein Binding Interface in Solution and an Evaluation of Hydrogen–Deuterium Exchange Kinetics for Adjudicating Candidate Docking Models. Analytical Chemistry, 2019, 91, 15709-15717.	3.2	32
24	Protein higher-order-structure determination by fast photochemical oxidation of proteins and mass spectrometry analysis. Nature Protocols, 2020, 15, 3942-3970.	5.5	32
25	Reactive oxygen species leave a damage trail that reveals water channels in Photosystem II. Science Advances, 2017, 3, eaao3013.	4.7	31
26	Recognition of Human IgG1 by Fcl̂³ Receptors: Structural Insights from Hydrogen–Deuterium Exchange and Fast Photochemical Oxidation of Proteins Coupled with Mass Spectrometry. Biochemistry, 2019, 58, 1074-1080.	1.2	28
27	Electronâ€capture dissociation and ion mobility mass spectrometry for characterization of the hemoglobin protein assembly. Protein Science, 2015, 24, 1325-1332.	3.1	26
28	Dimerization Controls Marburg Virus VP24-dependent Modulation of Host Antioxidative Stress Responses. Journal of Molecular Biology, 2016, 428, 3483-3494.	2.0	26
29	Native Mass Spectrometry Analysis of Oligomerization States of Fluorescence Recovery Protein and Orange Carotenoid Protein: Two Proteins Involved in the Cyanobacterial Photoprotection Cycle. Biochemistry, 2017, 56, 160-166.	1.2	26
30	A Single Approach Reveals the Composite Conformational Changes, Order of Binding, and Affinities for Calcium Binding to Calmodulin. Analytical Chemistry, 2019, 91, 5508-5512.	3.2	26
31	Native Mass Spectrometry, Ion Mobility, Electron-Capture Dissociation, and Modeling Provide Structural Information for Gas-Phase Apolipoprotein E Oligomers. Journal of the American Society for Mass Spectrometry, 2019, 30, 876-885.	1.2	25
32	A Multifunctional Chemical Agent as an Attenuator of Amyloid Burden and Neuroinflammation in Alzheimer's Disease. ACS Chemical Neuroscience, 2020, 11, 1471-1481.	1.7	25
33	A Molecular Mechanism for Nonphotochemical Quenching in Cyanobacteria. Biochemistry, 2017, 56, 2812-2823.	1.2	24
34	A Fast Photochemical Oxidation of Proteins (FPOP) platform for free-radical reactions: the carbonate radical anion with peptides and proteins. Free Radical Biology and Medicine, 2019, 131, 126-132.	1.3	24
35	Protein Footprinting and X-ray Crystallography Reveal the Interaction of PD-L1 and a Macrocyclic Peptide. Biochemistry, 2020, 59, 541-551.	1.2	24
36	Substrate Recognition by the Class II Lanthipeptide Synthetase HalM2. ACS Chemical Biology, 2020, 15, 1473-1486.	1.6	24

3

#	Article	IF	CITATIONS
37	Pulsed Hydrogen–Deuterium Exchange Illuminates the Aggregation Kinetics of α-Synuclein, the Causative Agent for Parkinson's Disease. ACS Chemical Neuroscience, 2018, 9, 1469-1476.	1.7	23
38	Native MS and ECD Characterization of a Fab–Antigen Complex May Facilitate Crystallization for X-ray Diffraction. Journal of the American Society for Mass Spectrometry, 2016, 27, 1139-1142.	1.2	22
39	Hydroxyl-Radical Reaction Pathways for the Fast Photochemical Oxidation of Proteins Platform As Revealed by ¹⁸ O Isotopic Labeling. Analytical Chemistry, 2019, 91, 9238-9245.	3.2	22
40	Protein-Metal-Ion Interactions Studied by Mass Spectrometry-Based Footprinting with Isotope-Encoded Benzhydrazide. Analytical Chemistry, 2019, 91, 1416-1423.	3.2	22
41	Estrogen Carcinogenesis: Specific Identification of Estrogen-Modified Nucleobase in Breast Tissue from Women. Chemical Research in Toxicology, 2008, 21, 1509-1513.	1.7	20
42	Mechanistic Studies of the Kinase Domains of Class IV Lanthipeptide Synthetases. ACS Chemical Biology, 2019, 14, 1583-1592.	1.6	20
43	Site-Specific Siderocalin Binding to Ferric and Ferric-Free Enterobactin As Revealed by Mass Spectrometry. ACS Chemical Biology, 2020, 15, 1154-1160.	1.6	20
44	Fast Protein Footprinting by X-ray Mediated Radical Trifluoromethylation. Journal of the American Society for Mass Spectrometry, 2020, 31, 1019-1024.	1.2	18
45	Hydrophobic peptides affect binding of calmodulin and Ca2+ as explored by H/D amide exchange and mass spectrometry. International Journal of Mass Spectrometry, 2011, 302, 85-92.	0.7	17
46	Native Mass Spectrometry, Ion mobility, and Collision-Induced Unfolding Categorize Malaria Antigen/Antibody Binding. Journal of the American Society for Mass Spectrometry, 2017, 28, 2515-2518.	1.2	17
47	Composite Conformational Changes of Signaling Proteins upon Ligand Binding Revealed by a Single Approach: Calcium-Calmodulin Study. Analytical Chemistry, 2019, 91, 12560-12567.	3.2	16
48	Deamidation Slows Curli Amyloid-Protein Aggregation. Biochemistry, 2017, 56, 2865-2872.	1.2	15
49	Organic Solvents for Enhanced Proteolysis of Stable Proteins for Hydrogen–Deuterium Exchange Mass Spectrometry. Analytical Chemistry, 2020, 92, 11553-11557.	3.2	15
50	Information for proteomics: ESI-MS titration by sodium ions gives the number of carboxylate groups in peptides. International Journal of Mass Spectrometry, 2004, 231, 113-117.	0.7	14
51	Peptide-Level Interactions between Proteins and Small-Molecule Drug Candidates by Two Hydrogenâ^'Deuterium Exchange MS-Based Methods: The Example of Apolipoprotein E3. Analytical Chemistry, 2017, 89, 10687-10695.	3.2	14
52	Membrane Protein Structure in Live Cells: Methodology for Studying Drug Interaction by Mass Spectrometry-Based Footprinting. Biochemistry, 2018, 57, 286-294.	1.2	14
53	Inhibition of Marburg Virus RNA Synthesis by a Synthetic Anti-VP35 Antibody. ACS Infectious Diseases, 2019, 5, 1385-1396.	1.8	14
54	Fluorierte Reagenzien in der Strukturproteomik. Angewandte Chemie, 2020, 132, 5932-5942.	1.6	14

#	Article	IF	CITATIONS
55	Nanoparticles and photochemistry for native-like transmembrane protein footprinting. Nature Communications, 2021, 12, 7270.	5.8	14
56	Hydrogen-Deuterium Exchange and Hydroxyl Radical Footprinting for Mapping Hydrophobic Interactions of Human Bromodomain with a Small Molecule Inhibitor. Journal of the American Society for Mass Spectrometry, 2019, 30, 2795-2804.	1.2	13
57	The Ebola Viral Protein 35 N-Terminus Is a Parallel Tetramer. Biochemistry, 2019, 58, 657-664.	1.2	13
58	Calcium Binding to the Innate Immune Protein Human Calprotectin Revealed by Integrated Mass Spectrometry. Journal of the American Chemical Society, 2020, 142, 13372-13383.	6.6	13
59	Understanding curli amyloid-protein aggregation by hydrogen–deuterium exchange and mass spectrometry. International Journal of Mass Spectrometry, 2017, 420, 16-23.	0.7	12
60	Structural basis for IFN antagonism by human respiratory syncytial virus nonstructural protein 2. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2020587118.	3.3	12
61	Radical cation/radical reactions: A Fourier transform ion cyclotron resonance study of allyl radical reacting with aromatic radical cations. International Journal of Mass Spectrometry, 2009, 287, 8-15.	0.7	11
62	lon-exchange chromatography followed by ESI-MS for quantitative analysis of sugar monophosphates from glucose catabolism. Journal of the American Society for Mass Spectrometry, 2006, 17, 104-107.	1.2	10
63	Hydrogen–Deuterium Exchange Mass Spectrometry Reveals Calcium Binding Properties and Allosteric Regulation of Downstream Regulatory Element Antagonist Modulator (DREAM). Biochemistry, 2017, 56, 3523-3530.	1.2	9
64	Laserâ€Initiated Radical Trifluoromethylation of Peptides and Proteins: Application to Massâ€Spectrometryâ€Based Protein Footprinting. Angewandte Chemie, 2017, 129, 14195-14198.	1.6	9
65	Top-Down Analysis of In-Source HDX of Native Protein Ions. Journal of the American Society for Mass Spectrometry, 2020, 31, 1151-1154.	1.2	9
66	Post-HDX Deglycosylation of Fc Gamma Receptor IIIa Glycoprotein Enables HDX Characterization of Its Binding Interface with IgG. Journal of the American Society for Mass Spectrometry, 2021, 32, 1638-1643.	1.2	9
67	Freeâ€Radical Membrane Protein Footprinting by Photolysis of Perfluoroisopropyl Iodide Partitioned to Detergent Micelle by Sonication. Angewandte Chemie - International Edition, 2021, 60, 8867-8873.	7.2	9
68	Deprotonated N-(2,4-dinitrophenyl)amino acids undergo cyclization in solution and the gas phase. International Journal of Mass Spectrometry, 2011, 306, 232-240.	0.7	8
69	Footprinting Mass Spectrometry of Membrane Proteins: Ferroportin Reconstituted in Saposin A Picodiscs. Analytical Chemistry, 2021, 93, 11370-11378.	3.2	8
70	Nonâ€canonical prolineâ€tyrosine interactions with multiple host proteins regulate Ebola virus infection. EMBO Journal, 2021, 40, e105658.	3. 5	8
71	Carbocation Footprinting of Soluble and Transmembrane Proteins. Analytical Chemistry, 2021, 93, 13101-13105.	3.2	8
72	Diethylpyrocarbonate Footprints a Membrane Protein in Micelles. Journal of the American Society for Mass Spectrometry, 2021, 32, 2636-2643.	1.2	8

#	Article	IF	Citations
73	Trifluoroethanol Partially Unfolds G93A SOD1 Leading to Protein Aggregation: A Study by Native Mass Spectrometry and FPOP Protein Footprinting. Biochemistry, 2020, 59, 3650-3659.	1.2	7
74	Pulsed Hydrogen–Deuterium Exchange Reveals Altered Structures and Mechanisms in the Aggregation of Familial Alzheimer's Disease Mutants. ACS Chemical Neuroscience, 2021, 12, 1972-1982.	1.7	7
75	Ion behavior in an electrically compensated ion cyclotron resonance trap. International Journal of Mass Spectrometry, 2011, 300, 143-148.	0.7	6
76	Hydrogen–deuterium exchange mass spectrometry identifies spatially distinct antibody epitopes on domain III of the Zika virus envelope protein. Journal of Mass Spectrometry, 2021, 56, e4685.	0.7	6
77	Benzoyl Transfer for Footprinting Alcohol-Containing Residues in Higher Order Structural Applications of Mass-Spectrometry-Based Proteomics. Analytical Chemistry, 2022, 94, 1520-1524.	3.2	6
78	Revisiting high-resolution crystal structure of Phormidium rubidum phycocyanin. Photosynthesis Research, 2020, 144, 349-360.	1.6	5
79	Primary and Higher Order Structure of the Reaction Center from the Purple Phototrophic Bacterium <i>Blastochloris viridis</i> : A Test for Native Mass Spectrometry. Journal of Proteome Research, 2018, 17, 1615-1623.	1.8	4
80	Nipah Virus V Protein Binding Alters MDA5 Helicase Folding Dynamics. ACS Infectious Diseases, 2022, 8, 118-128.	1.8	3
81	Protonation of curcumin triggers sequential double cyclization in the gas-phase: An electrospray mass spectrometry and DFT study. International Journal of Mass Spectrometry, 2019, 438, 107-114.	0.7	2
82	Protonated N -alkyl-2-nitroanilines undergo intramolecular oxidation of the alkyl chain upon collisional activation. International Journal of Mass Spectrometry, 2017, 413, 75-80.	0.7	1
83	Domain-specific biochemical and serological characterization of SARS-CoV-2 nucleocapsid protein. STAR Protocols, 2021, 2, 100906.	0.5	1
84	David Russell as New Editor for Critical Insights to Replace Carol Robinson. Journal of the American Society for Mass Spectrometry, 2013, 24, 1821-1822.	1.2	0
85	Nico Nibbering (1938–2014). Journal of the American Society for Mass Spectrometry, 2014, 25, 1829-1831.	1.2	0
86	Focus in Honor of Yinsheng Wang, Recipient of the 2013 Biemann Medal. Journal of the American Society for Mass Spectrometry, 2014, 25, 1096-1097.	1.2	0
87	R. Graham Cooks Elected to the National Academy of Sciences. Journal of the American Society for Mass Spectrometry, 2015, 26, 1057-1058.	1.2	0
88	A Focus Honoring R. Graham Cooks' Election to the National Academy of Sciences. Journal of the American Society for Mass Spectrometry, 2017, 28, 986-990.	1.2	0
89	Freeâ€Radical Membrane Protein Footprinting by Photolysis of Perfluoroisopropyl Iodide Partitioned to Detergent Micelle by Sonication. Angewandte Chemie, 2021, 133, 8949-8955.	1.6	0