List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7735944/publications.pdf Version: 2024-02-01

		29994	29081
125	11,443	54	104
papers	citations	h-index	g-index
122	100	100	00000
133	133	133	9822
all docs	docs citations	times ranked	citing authors

Δνισρà 🔿 Veill ette

#	Article	IF	CITATIONS
1	SLAMF7 selectively favors degranulation to promote cytotoxicity in human NK cells. European Journal of Immunology, 2022, 52, 62-74.	1.6	4
2	When killers become thieves: Trogocytosed PD-1 inhibits NK cells in cancer. Science Advances, 2022, 8, eabj3286.	4.7	35
3	Plasma membrane lipid scrambling causing phosphatidylserine exposure negatively regulates NK cell activation. Cellular and Molecular Immunology, 2021, 18, 686-697.	4.8	6
4	Alternative Splicing of the Inhibitory Immune Checkpoint Receptor SLAMF6 Generates a Dominant Positive Form, Boosting T-cell Effector Functions. Cancer Immunology Research, 2021, 9, 637-650.	1.6	6
5	The spatial distribution of target cell ligands determines NK cell degranulation. Science Signaling, 2021, 14, .	1.6	0
6	DNAM-1 regulates Foxp3 expression in regulatory T cells by interfering with TIGIT under inflammatory conditions. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	24
7	SLAM family receptors control pro-survival effectors in germinal center B cells to promote humoral immunity. Journal of Experimental Medicine, 2021, 218, .	4.2	8
8	Inflammatory macrophages exploit unconventional pro-phagocytic integrins for phagocytosis and anti-tumor immunity. Cell Reports, 2021, 37, 110111.	2.9	22
9	CD155 on Tumor Cells Drives Resistance to Immunotherapy by Inducing the Degradation of the Activating Receptor CD226 in CD8+ TÂCells. Immunity, 2020, 53, 805-823.e15.	6.6	79
10	AXL confers cell migration and invasion by hijacking a PEAK1-regulated focal adhesion protein network. Nature Communications, 2020, 11, 3586.	5.8	37
11	Critical Role for SLAM/SAP Signaling in the Thymic Developmental Programming of IL-17– and IFN-γ–Producing γδT Cells. Journal of Immunology, 2020, 204, 1521-1534.	0.4	13
12	Critical Role of Lipid Scramblase TMEM16F in Phosphatidylserine Exposure and Repair of Plasma Membrane after Pore Formation. Cell Reports, 2020, 30, 1129-1140.e5.	2.9	55
13	Progression of AITL-like tumors in mice is driven by Tfh signature proteins and T-B cross talk. Blood Advances, 2020, 4, 868-879.	2.5	14
14	SLAMF6â€< deficiency augments tumor killing and skews toward an effector phenotype revealing it as a novel T cell checkpoint. ELife, 2020, 9, .	2.8	19
15	Introduction: Signaling and signal diversification in antigenâ€specific immune cells. Immunological Reviews, 2019, 291, 5-7.	2.8	0
16	SLAM receptors foster iNKT cell development by reducing TCR signal strength after positive selection. Nature Immunology, 2019, 20, 447-457.	7.0	50
17	Signaling Regulatory Protein (SIRP)α-CD47 Blockade Joins the Ranks of Immune Checkpoint Inhibition. Journal of Clinical Oncology, 2019, 37, 1012-1014.	0.8	27
18	SIRPα–CD47 Immune Checkpoint Blockade in Anticancer Therapy. Trends in Immunology, 2018, 39, 173-184.	2.9	305

#	Article	IF	CITATIONS
19	Loss of human ICOSL results in combined immunodeficiency. Journal of Experimental Medicine, 2018, 215, 3151-3164.	4.2	40
20	Developing combination immunotherapies against cancer that make sense. Science Immunology, 2018, 3,	5.6	7
21	It takes a village. Nature Immunology, 2018, 19, 1046-1047.	7.0	Ο
22	Combined mTOR and MEK inhibition is an effective therapy in a novel mouse model for angiosarcoma. Oncotarget, 2018, 9, 24750-24765.	0.8	22
23	Morpholino-based correction of hypomorphic ZAP70 mutation in an adult with combined immunodeficiency. Journal of Allergy and Clinical Immunology, 2017, 139, 1688-1692.e10.	1.5	14
24	SLAMF7 is critical for phagocytosis of haematopoietic tumour cells via Mac-1 integrin. Nature, 2017, 544, 493-497.	13.7	188
25	Activation by SLAM Family Receptors Contributes to NK Cell Mediated "Missing-Self―Recognition. PLoS ONE, 2016, 11, e0153236.	1.1	10
26	SLAMâ€associated protein favors the development of iNKT2 over iNKT17 cells. European Journal of Immunology, 2016, 46, 2162-2174.	1.6	18
27	The Csk-Associated Adaptor PAG Inhibits Effector T Cell Activation in Cooperation with Phosphatase PTPN22 and Dok Adaptors. Cell Reports, 2016, 17, 2776-2788.	2.9	39
28	Deletion of <i>Slam</i> locus in mice reveals inhibitory role of SLAM family in NK cell responses regulated by cytokines and LFA-1. Journal of Experimental Medicine, 2016, 213, 2187-2207.	4.2	24
29	SLAM family receptors in normal immunity and immune pathologies. Current Opinion in Immunology, 2016, 38, 45-51.	2.4	107
30	A hematopoietic cell–driven mechanism involving SLAMF6 receptor, SAP adaptors and SHP-1 phosphatase regulates NK cell education. Nature Immunology, 2016, 17, 387-396.	7.0	54
31	SLAM Family Receptors. , 2016, , 415-423.		Ο
32	Mosaic partial deletion of <i>PTPN12</i> in a child with interrupted aortic arch type A. American Journal of Medical Genetics, Part A, 2015, 167, 2674-2683.	0.7	3
33	A Functional Polymorphism ofPtpn22Is Associated with Type 1 Diabetes in the BioBreeding Rat. Journal of Immunology, 2015, 194, 615-629.	0.4	7
34	Loss of PTPN12 Stimulates Progression of ErbB2-Dependent Breast Cancer by Enhancing Cell Survival, Migration, and Epithelial-to-Mesenchymal Transition. Molecular and Cellular Biology, 2015, 35, 4069-4082.	1.1	33
35	DNAM-1 controls NK cell activation via an ITT-like motif. Journal of Experimental Medicine, 2015, 212, 2165-2182.	4.2	115
36	Immune Cell Inhibition by SLAMF7 Is Mediated by a Mechanism Requiring Src Kinases, CD45, and SHIP-1 That Is Defective in Multiple Myeloma Cells. Molecular and Cellular Biology, 2015, 35, 41-51.	1.1	70

#	Article	IF	CITATIONS
37	When lymphocytes run out of steam. Nature, 2014, 510, 222-223.	13.7	4
38	EAT-2, a SAP-like adaptor, controls NK cell activation through phospholipase CÎ ³ , Ca++, and Erk, leading to granule polarization. Journal of Experimental Medicine, 2014, 211, 727-742.	4.2	73
39	Control of Dendritic Cell Migration, T Cell-Dependent Immunity, and Autoimmunity by Protein Tyrosine Phosphatase PTPN12 Expressed in Dendritic Cells. Molecular and Cellular Biology, 2014, 34, 888-899.	1.1	58
40	Critical Role of SAP in Progression and Reactivation but Not Maintenance of T Cell-Dependent Humoral Immunity. Molecular and Cellular Biology, 2013, 33, 1223-1232.	1.1	8
41	Circulating Precursor CCR7loPD-1hi CXCR5+ CD4+ T Cells Indicate Tfh Cell Activity and Promote Antibody Responses upon Antigen Reexposure. Immunity, 2013, 39, 770-781.	6.6	571
42	CS1, a SLAM family receptor involved in immune regulation, is a therapeutic target in multiple myeloma. Critical Reviews in Oncology/Hematology, 2013, 88, 168-177.	2.0	99
43	Genome-Wide Mouse Mutagenesis Reveals CD45-Mediated T Cell Function as Critical in Protective Immunity to HSV-1. PLoS Pathogens, 2013, 9, e1003637.	2.1	20
44	Macrophage Fusion Is Controlled by the Cytoplasmic Protein Tyrosine Phosphatase PTP-PEST/PTPN12. Molecular and Cellular Biology, 2013, 33, 2458-2469.	1.1	37
45	X-linked lymphoproliferative syndromes and related autosomal recessive disorders. Current Opinion in Allergy and Clinical Immunology, 2013, 13, 614-622.	1.1	46
46	The Adaptor Molecule Signaling Lymphocytic Activation Molecule (SLAM)-associated Protein (SAP) Is Essential in Mechanisms Involving the Fyn Tyrosine Kinase for Induction and Progression of Collagen-induced Arthritis. Journal of Biological Chemistry, 2013, 288, 31423-31436.	1.6	17
47	The adaptor molecule SAP plays essential roles during invariant NKT cell cytotoxicity and lytic synapse formation. Blood, 2013, 121, 3386-3395.	0.6	28
48	Csk keeps LYP on a leash. Nature Chemical Biology, 2012, 8, 412-413.	3.9	7
49	The Phosphatase PTP-PEST/PTPN12 Regulates Endothelial Cell Migration and Adhesion, but Not Permeability, and Controls Vascular Development and Embryonic Viability. Journal of Biological Chemistry, 2012, 287, 43180-43190.	1.6	35
50	Redefining interferon-producing killer dendritic cells as a novel intermediate in NK-cell differentiation. Blood, 2012, 119, 4349-4357.	0.6	30
51	The Adaptor SAP Controls NK Cell Activation byÂRegulating the Enzymes Vav-1 and SHIP-1 and by Enhancing Conjugates with Target Cells. Immunity, 2012, 36, 974-985.	6.6	118
52	Protein tyrosine phosphatases in lymphocyte activation and autoimmunity. Nature Immunology, 2012, 13, 439-447.	7.0	210
53	Magnesium in a signalling role. Nature, 2011, 475, 462-463.	13.7	32
54	The Phosphatase PTP-PEST Promotes Secondary T Cell Responses by Dephosphorylating the Protein Tyrosine Kinase Pyk2. Immunity, 2010, 33, 167-180.	6.6	49

#	Article	IF	CITATIONS
55	Do NK cells always need a license to kill?. Nature Immunology, 2010, 11, 279-280.	7.0	15
56	SLAM-Family Receptors: Immune Regulators with or without SAP-Family Adaptors. Cold Spring Harbor Perspectives in Biology, 2010, 2, a002469-a002469.	2.3	117
57	How do SAP family deficiencies compromise immunity?. Trends in Immunology, 2010, 31, 295-302.	2.9	31
58	Pillars article: the CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. 1994. Journal of Immunology, 2010, 185, 2650-7.	0.4	3
59	Influence of CRACC, a SLAM family receptor coupled to the adaptor EAT-2, on natural killer cell function. Nature Immunology, 2009, 10, 297-305.	7.0	139
60	Essential function for SAP family adaptors in the surveillance of hematopoietic cells by natural killer cells. Nature Immunology, 2009, 10, 973-980.	7.0	115
61	PEST family phosphatases in immunity, autoimmunity, and autoinflammatory disorders. Immunological Reviews, 2009, 228, 312-324.	2.8	104
62	Importance and mechanism of â€~switch' function of SAP family adapters. Immunological Reviews, 2009, 232, 229-239.	2.8	54
63	Organization of immunoreceptor signaling by adapters. Immunological Reviews, 2009, 232, 5-6.	2.8	0
64	Lck-dependent Fyn Activation Requires C Terminus-dependent Targeting of Kinase-active Lck to Lipid Rafts. Journal of Biological Chemistry, 2008, 283, 26409-26422.	1.6	21
65	Control of T Lymphocyte Signaling by Ly108, a Signaling Lymphocytic Activation Molecule Family Receptor Implicated in Autoimmunity. Journal of Biological Chemistry, 2008, 283, 19255-19264.	1.6	57
66	Differential Requirement for the SAP-Fyn Interaction during NK T Cell Development and Function. Journal of Immunology, 2008, 181, 2311-2320.	0.4	46
67	SAP expression in T cells, not in B cells, is required for humoral immunity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1273-1278.	3.3	62
68	PAG-Associated FynT Regulates Calcium Signaling and Promotes Anergy in T Lymphocytes. Molecular and Cellular Biology, 2007, 27, 1960-1973.	1.1	79
69	Consequence of the SLAM-SAP Signaling Pathway in Innate-like and Conventional Lymphocytes. Immunity, 2007, 27, 698-710.	6.6	100
70	SLAM family receptors and SAP-related adaptors: matters arising. Trends in Immunology, 2006, 27, 228-234.	2.9	33
71	NK cell regulation by SLAM family receptors and SAP-related adapters. Immunological Reviews, 2006, 214, 22-34.	2.8	92
72	Immune regulation by SLAM family receptors and SAP-related adaptors. Nature Reviews Immunology, 2006, 6, 56-66.	10.6	189

#	Article	IF	CITATIONS
73	T cell receptor for antigen induces linker for activation of T cell–dependent activation of a negative signaling complex involving Dok-2, SHIP-1, and Grb-2. Journal of Experimental Medicine, 2006, 203, 2509-2518.	4.2	114
74	Association between SAP and FynT: Inducible SH3 Domain-Mediated Interaction Controlled by Engagement of the SLAM Receptor. Molecular and Cellular Biology, 2006, 26, 5559-5568.	1.1	30
75	Negative regulation of natural killer cell function by EAT-2, a SAP-related adaptor. Nature Immunology, 2005, 6, 1002-1010.	7.0	133
76	Activation of Hematopoietic Progenitor Kinase 1 Involves Relocation, Autophosphorylation, and Transphosphorylation by Protein Kinase D1. Molecular and Cellular Biology, 2005, 25, 2364-2383.	1.1	57
77	Protein Tyrosine Phosphatase α Regulates Fyn Activity and Cbp/PAG Phosphorylation in Thymocyte Lipid Rafts. Journal of Immunology, 2005, 175, 7947-7956.	0.4	50
78	Regulation of natural cytotoxicity by the adaptor SAP and the Src-related kinase Fyn. Journal of Experimental Medicine, 2005, 202, 181-192.	4.2	102
79	Immune Functions in Mice Lacking Clnk, an SLP-76-Related Adaptor Expressed in a Subset of Immune Cells. Molecular and Cellular Biology, 2004, 24, 6067-6075.	1.1	27
80	Molecular Dissection of 2B4 Signaling: Implications for Signal Transduction by SLAM-Related Receptors. Molecular and Cellular Biology, 2004, 24, 5144-5156.	1.1	105
81	Enrichment of Lck in Lipid Rafts Regulates Colocalized Fyn Activation and the Initiation of Proximal Signals through TCRαβ. Journal of Immunology, 2004, 172, 4266-4274.	0.4	42
82	Inhibition of the Jun N-Terminal Protein Kinase Pathway by SHIP-1, a Lipid Phosphatase That Interacts with the Adaptor Molecule Dok-3. Molecular and Cellular Biology, 2004, 24, 2332-2343.	1.1	59
83	SLAM Family Receptors Regulate Immunity with and without SAP-related Adaptors. Journal of Experimental Medicine, 2004, 199, 1175-1178.	4.2	26
84	Specialised adaptors in immune cells. Current Opinion in Cell Biology, 2004, 16, 146-155.	2.6	7
85	Adaptors in immune regulation. Seminars in Immunology, 2004, 16, 349.	2.7	1
86	The SAP family of adaptors in immune regulation. Seminars in Immunology, 2004, 16, 409-419.	2.7	51
87	Genetic Evidence Linking SAP, the X-Linked Lymphoproliferative Gene Product, to Src-Related Kinase FynT in TH2 Cytokine Regulation. Immunity, 2004, 21, 707-717.	6.6	123
88	Mini-review SAP: a molecular switch regulating the immune response through a unique signaling mechanism. European Journal of Immunology, 2003, 33, 1141-1144.	1.6	9
89	Molecular and immunological basis of X-linked lymphoproliferative disease. Immunological Reviews, 2003, 192, 212-224.	2.8	89
90	The SLAM family of immune-cell receptors. Current Opinion in Immunology, 2003, 15, 277-285.	2.4	107

#	Article	IF	CITATIONS
91	Binding of SAP SH2 domain to FynT SH3 domain reveals a novel mechanism of receptor signalling in immune regulation. Nature Cell Biology, 2003, 5, 149-154.	4.6	254
92	Phosphorylation-Dependent Regulation of T-Cell Activation by PAG/Cbp, a Lipid Raft-Associated Transmembrane Adaptor. Molecular and Cellular Biology, 2003, 23, 2017-2028.	1.1	179
93	Regulation of Fyn Through Translocation of Activated Lck into Lipid Rafts. Journal of Experimental Medicine, 2003, 197, 1221-1227.	4.2	106
94	NEGATIVEREGULATION OFIMMUNORECEPTORSIGNALING. Annual Review of Immunology, 2002, 20, 669-707.	9.5	226
95	The SAP Family: A New Class of Adaptor-Like Molecules That Regulates Immune Cell Functions. Science Signaling, 2002, 2002, pe8-pe8.	1.6	15
96	Proximal protein tyrosine kinases in immunoreceptor signaling. Current Opinion in Immunology, 2001, 13, 299-306.	2.4	174
97	Regulation of SLAM-mediated signal transduction by SAP, the X-linked lymphoproliferative gene product. Nature Immunology, 2001, 2, 681-690.	7.0	245
98	The Noncatalytic Domain of Protein-tyrosine Phosphatase-PEST Targets Paxillin for Dephosphorylation in Vivo. Journal of Biological Chemistry, 2000, 275, 1405-1413.	1.6	63
99	Regulation of SOCS-1 Expression by Translational Repression. Journal of Biological Chemistry, 2000, 275, 21596-21604.	1.6	63
100	Clnk, a Novel Slp-76–Related Adaptor Molecule Expressed in Cytokine-Stimulated Hemopoietic Cells. Journal of Experimental Medicine, 1999, 190, 1527-1534.	4.2	56
101	Cooperative Inhibition of  T-Cell Antigen Receptor Signaling by a Complex between a Kinase and a Phosphatase. Journal of Experimental Medicine, 1999, 189, 111-121.	4.2	393
102	Interactions of CD45-associated Protein with the Antigen Receptor Signaling Machinery in T-lymphocytes. Journal of Biological Chemistry, 1999, 274, 14392-14399.	1.6	25
103	The Carboxyl-terminal Region of Biliary Clycoprotein Controls Its Tyrosine Phosphorylation and Association with Protein-tyrosine Phosphatases SHP-1 and SHP-2 in Epithelial Cells. Journal of Biological Chemistry, 1999, 274, 335-344.	1.6	154
104	Sequence Requirements for Association of Protein-tyrosine Phosphatase PEP with the Src Homology 3 Domain of Inhibitory Tyrosine Protein Kinase p50. Journal of Biological Chemistry, 1998, 273, 13217-13222.	1.6	62
105	High Expression of Inhibitory Receptor SHPS-1 and Its Association with Protein-tyrosine Phosphatase SHP-1 in Macrophages. Journal of Biological Chemistry, 1998, 273, 22719-22728.	1.6	201
106	Interleukin 2–mediated Uncoupling of T Cell Receptor α/β from CD3 Signaling. Journal of Experimental Medicine, 1998, 188, 1575-1586.	4.2	17
107	Regulation of Mouse PECAM-1 Tyrosine Phosphorylation by the Src and Csk Families of Protein-tyrosine Kinases. Journal of Biological Chemistry, 1998, 273, 15765-15772.	1.6	96
108	Zinc Is Essential for Binding of p56 to CD4 and CD8α. Journal of Biological Chemistry, 1998, 273, 32878-32882.	1.6	86

#	Article	IF	CITATIONS
109	Direct Association of Protein-tyrosine Phosphatase PTP-PEST with Paxillin. Journal of Biological Chemistry, 1998, 273, 6474-6481.	1.6	158
110	Chk, a Csk Family Tyrosine Protein Kinase, Exhibits Csk-like Activity in Fibroblasts, but Not in an Antigen-specific T-cell Line. Journal of Biological Chemistry, 1997, 272, 1355-1362.	1.6	35
111	Genetic Evidence for a Tyrosine Kinase Cascade Preceding the Mitogen-activated Protein Kinase Cascade in Vertebrate G Protein Signaling. Journal of Biological Chemistry, 1997, 272, 17209-17215.	1.6	67
112	Inhibitory Tyrosine Protein Kinase p50 Is Associated with Protein-tyrosine Phosphatase PTP-PEST in Hemopoietic and Non-hemopoietic Cells. Journal of Biological Chemistry, 1997, 272, 23455-23462.	1.6	127
113	Reconstitution of Interactions between Protein-tyrosine Phosphatase CD45 and Tyrosine-protein Kinase p56 in Nonlymphoid Cells. Journal of Biological Chemistry, 1997, 272, 12754-12761.	1.6	14
114	Association of biliary glycoprotein with protein tyrosine phosphatase SHP-1 in malignant colon epithelial cells. Oncogene, 1997, 14, 783-790.	2.6	134
115	Regulation of Zap-70 by Src Family Tyrosine Protein Kinases in an Antigen-specific T-cell Line. Journal of Biological Chemistry, 1995, 270, 2791-2799.	1.6	35
116	Negative regulation of T-cell receptor signalling by tyrosine protein kinase p50csk. Nature, 1993, 365, 156-160.	13.7	273
117	Association of tyrosine kinase p56lck with CD4 inhibits the induction of growth through the αβ T-cell receptor. Nature, 1992, 358, 328-331.	13.7	156
118	Enhancement of T-cell responsiveness by the lymphocyte-specific tyrosine protein kinase p56lck. Nature, 1991, 350, 62-66.	13.7	294
119	Avian CD4 and CD8 interact with a cellular tyrosine protein kinase homologous to mammalian p56lck. European Journal of Immunology, 1991, 21, 397-401.	1.6	29
120	The Lymphocyte-Specific Tyrosine Protein Kinase p56lck. Cancer Investigation, 1991, 9, 455-463.	0.6	8
121	The cytoplasmic domain of CD4 is required for stable association with the lymphocyte-specific tyrosine protein kinase p56lck. European Journal of Immunology, 1990, 20, 1397-1400.	1.6	13
122	Signal transduction through the CD4 receptor involves the activation of the internal membrane tyrosine-protein kinase p56lck. Nature, 1989, 338, 257-259.	13.7	687
123	Inability of CD8α′polypeptides to associate with p56lck correlates with impaired function in vitro and lack of expression in vivo. Nature, 1989, 342, 278-281.	13.7	185
124	A function for the lck proto-oncogene. Trends in Biochemical Sciences, 1989, 14, 404-407.	3.7	60
125	The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. Cell, 1988, 55, 301-308.	13.5	1,453