Dailiang Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7735784/publications.pdf Version: 2024-02-01

DAILIANC PENC

#	Article	IF	CITATIONS
1	Technologies and perspectives for achieving carbon neutrality. Innovation(China), 2021, 2, 100180.	5.2	306
2	Trophic state assessment of global inland waters using a MODIS-derived Forel-Ule index. Remote Sensing of Environment, 2018, 217, 444-460.	4.6	195
3	Vegetation Indices Combining the Red and Red-Edge Spectral Information for Leaf Area Index Retrieval. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 1482-1493.	2.3	140
4	Land surface phenology of China's temperate ecosystems over 1999–2013: Spatial–temporal patterns, interaction effects, covariation with climate and implications for productivity. Agricultural and Forest Meteorology, 2016, 216, 177-187.	1.9	124
5	Downscaling of solar-induced chlorophyll fluorescence from canopy level to photosystem level using a random forest model. Remote Sensing of Environment, 2019, 231, 110772.	4.6	109
6	Improved modeling of land surface phenology using MODIS land surface reflectance and temperature at evergreen needleleaf forests of central North America. Remote Sensing of Environment, 2016, 176, 152-162.	4.6	85
7	Progress and Trends in the Application of Google Earth and Google Earth Engine. Remote Sensing, 2021, 13, 3778.	1.8	71
8	Annual 30-m land use/land cover maps of China for 1980–2015 from the integration of AVHRR, MODIS and Landsat data using the BFAST algorithm. Science China Earth Sciences, 2020, 63, 1390-1407.	2.3	64
9	An Overview of the Applications of Earth Observation Satellite Data: Impacts and Future Trends. Remote Sensing, 2022, 14, 1863.	1.8	61
10	Intercomparison and evaluation of spring phenology products using National Phenology Network and AmeriFlux observations in the contiguous United States. Agricultural and Forest Meteorology, 2017, 242, 33-46.	1.9	58
11	Scaling effects on spring phenology detections from MODIS data at multiple spatial resolutions over the contiguous United States. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 132, 185-198.	4.9	58
12	Distribution of ecological restoration projects associated with land use and land cover change in China and their ecological impacts. Science of the Total Environment, 2022, 825, 153938.	3.9	56
13	Measuring and evaluating SDG indicators with Big Earth Data. Science Bulletin, 2022, 67, 1792-1801.	4.3	51
14	Comparison of country-level cropland areas between ESA-CCI land cover maps and FAOSTAT data. International Journal of Remote Sensing, 2018, 39, 6631-6645.	1.3	49
15	Effects of LiDAR point density, sampling size and height threshold on estimation accuracy of crop biophysical parameters. Optics Express, 2016, 24, 11578.	1.7	44
16	Partial Least Square Discriminant Analysis Based on Normalized Two-Stage Vegetation Indices for Mapping Damage from Rice Diseases Using PlanetScope Datasets. Sensors, 2018, 18, 1901.	2.1	44
17	Country-level net primary production distribution and response to drought and land cover change. Science of the Total Environment, 2017, 574, 65-77.	3.9	43
18	Comparisons of three recent moderate resolution African land cover datasets: CGLS-LC100, ESA-S2-LC20, and FROM-GLC-Africa30. International Journal of Remote Sensing, 2019, 40, 6185-6202.	1.3	43

DAILIANG PENG

#	Article	IF	CITATIONS
19	The Influences of Drought and Land-Cover Conversion on Inter-Annual Variation of NPP in the Three-North Shelterbelt Program Zone of China Based on MODIS Data. PLoS ONE, 2016, 11, e0158173.	1.1	41
20	MODIS observations of water color of the largest 10 lakes in China between 2000 and 2012. International Journal of Digital Earth, 2016, 9, 788-805.	1.6	38
21	Comparative Performances of Airborne LiDAR Height and Intensity Data for Leaf Area Index Estimation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 300-310.	2.3	38
22	Can changes in autumn phenology facilitate earlier green-up date of northern vegetation?. Agricultural and Forest Meteorology, 2020, 291, 108077.	1.9	36
23	Investigation of land surface phenology detections in shrublands using multiple scale satellite data. Remote Sensing of Environment, 2021, 252, 112133.	4.6	35
24	Assessing photosynthetic light-use efficiency using a solar-induced chlorophyll fluorescence and photochemical reflectance index. International Journal of Remote Sensing, 2013, 34, 4264-4280.	1.3	34
25	A Landsat-5 Atmospheric Correction Based on MODIS Atmosphere Products and 6S Model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7, 1609-1615.	2.3	33
26	Characteristics and drivers of global NDVIâ€based FPAR from 1982 to 2006. Global Biogeochemical Cycles, 2012, 26, .	1.9	32
27	Combining hyperspectral imagery and LiDAR pseudo-waveform for predicting crop LAI, canopy height and above-ground biomass. Ecological Indicators, 2019, 102, 801-812.	2.6	31
28	Contrasting Effects of Temperature and Precipitation on Vegetation Greenness along Elevation Gradients of the Tibetan Plateau. Remote Sensing, 2020, 12, 2751.	1.8	29
29	FROM-GLC Plus: toward near real-time and multi-resolution land cover mapping. GIScience and Remote Sensing, 2022, 59, 1026-1047.	2.4	29
30	Retrieving aboveground biomass of wetland Phragmites australis (common reed) using a combination of airborne discrete-return LiDAR and hyperspectral data. International Journal of Applied Earth Observation and Geoinformation, 2017, 58, 107-117.	1.4	24
31	Scaling up spring phenology derived from remote sensing images. Agricultural and Forest Meteorology, 2018, 256-257, 207-219.	1.9	21
32	Estimating maize GPP using near-infrared radiance of vegetation. Science of Remote Sensing, 2020, 2, 100009.	2.2	18
33	Assessing spectral indices to estimate the fraction of photosynthetically active radiation absorbed by the vegetation canopy. International Journal of Remote Sensing, 2018, 39, 8022-8040.	1.3	17
34	Estimating the Aboveground Biomass for Planted Forests Based on Stand Age and Environmental Variables. Remote Sensing, 2019, 11, 2270.	1.8	17
35	The influence of landscape's dynamics on the Oriental Migratory Locust habitat change based on the time-series satellite data. Journal of Environmental Management, 2018, 218, 280-290.	3.8	16
36	A Novel in Situ FPAR Measurement Method for Low Canopy Vegetation Based on a Digital Camera and Reference Panel. Remote Sensing, 2013, 5, 274-281.	1.8	15

DAILIANG PENG

#	Article	IF	CITATIONS
37	Exploring difference in land surface temperature between the city centres and urban expansion areas of China's major cities. International Journal of Remote Sensing, 2020, 41, 8965-8985.	1.3	13
38	Spatiotemporal Dynamics of Net Primary Productivity in China's Urban Lands during 1982–2015. Remote Sensing, 2021, 13, 400.	1.8	10
39	Upscaling from Instantaneous to Daily Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) for Satellite Products. Remote Sensing, 2020, 12, 2083.	1.8	9
40	A Fast and Precise Method for Large-Scale Land-Use Mapping Based on Deep Learning. , 2019, , .		8
41	A large-scale, long time-series (1984‒2020) of soybean mapping with phenological features: Heilongjiang Province as a test case. International Journal of Remote Sensing, 2021, 42, 7332-7356.	1.3	8
42	The Accuracy of Winter Wheat Identification at Different Growth Stages Using Remote Sensing. Remote Sensing, 2022, 14, 893.	1.8	8
43	Response of Spectral Reflectances and Vegetation Indices on Varying Juniper Cone Densities. Remote Sensing, 2013, 5, 5330-5345.	1.8	7
44	Estimating woody above-ground biomass in an arid zone of central Australia using Landsat imagery. Journal of Applied Remote Sensing, 2015, 9, 096036.	0.6	7
45	Exploring the temporal density of Landsat observations for cropland mapping: experiments from Egypt, Ethiopia, and South Africa. International Journal of Remote Sensing, 2018, 39, 7328-7349.	1.3	7
46	Exploring intra-annual variation in cropland classification accuracy using monthly, seasonal, and yearly sample set. International Journal of Remote Sensing, 0, , 1-16.	1.3	7
47	Improving Estimation of Woody Aboveground Biomass of Sparse Mixed Forest over Dryland Ecosystem by Combining Landsat-8, GaoFen-2, and UAV Imagery. Remote Sensing, 2021, 13, 4859.	1.8	6
48	Cropland heterogeneity changes on the Northeast China Plain in the last three decades (1980s–2010s). PeerJ, 2020, 8, e9835.	0.9	2
49	Soybean EOS Spatiotemporal Characteristics and Their Climate Drivers in Global Major Regions. Remote Sensing, 2022, 14, 1867.	1.8	1