John Danesh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7735593/publications.pdf

Version: 2024-02-01

7551 8835 54,507 145 77 145 citations h-index g-index papers 163 163 163 68096 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Analysis of protein-coding genetic variation in 60,706 humans. Nature, 2016, 536, 285-291.	13.7	9,051
2	Genetic studies of body mass index yield new insights for obesity biology. Nature, 2015, 518, 197-206.	13.7	3,823
3	Discovery and refinement of loci associated with lipid levels. Nature Genetics, 2013, 45, 1274-1283.	9.4	2,641
4	C-Reactive Protein and Other Circulating Markers of Inflammation in the Prediction of Coronary Heart Disease. New England Journal of Medicine, 2004, 350, 1387-1397.	13.9	2,608
5	A comprehensive 1000 Genomes–based genome-wide association meta-analysis of coronary artery disease. Nature Genetics, 2015, 47, 1121-1130.	9.4	2,054
6	Defining the role of common variation in the genomic and biological architecture of adult human height. Nature Genetics, 2014, 46, 1173-1186.	9.4	1,818
7	Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nature Genetics, 2012, 44, 981-990.	9.4	1,748
8	Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet, The, 2016, 388, 2532-2561.	6.3	1,399
9	New genetic loci link adipose and insulin biology to body fat distribution. Nature, 2015, 518, 187-196.	13.7	1,328
10	Genomic atlas of the human plasma proteome. Nature, 2018, 558, 73-79.	13.7	1,180
11	Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nature Genetics, 2018, 50, 524-537.	9.4	1,124
12	The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common Complex Disease. Cell, 2016, 167, 1415-1429.e19.	13.5	1,052
13	PhenoScanner V2: an expanded tool for searching human genotype–phenotype associations. Bioinformatics, 2019, 35, 4851-4853.	1.8	1,036
14	PhenoScanner: a database of human genotype–phenotype associations. Bioinformatics, 2016, 32, 3207-3209.	1.8	983
15	The genetic architecture of type 2 diabetes. Nature, 2016, 536, 41-47.	13.7	952
16	Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nature Genetics, 2018, 50, 1412-1425.	9.4	924
17	Risk thresholds for alcohol consumption: combined analysis of individual-participant data for 599â€^912 current drinkers in 83 prospective studies. Lancet, The, 2018, 391, 1513-1523.	6.3	858
18	Common variants associated with plasma triglycerides and risk for coronary artery disease. Nature Genetics, 2013, 45, 1345-1352.	9.4	754

#	Article	lF	CITATIONS
19	Diagnostic Yield and Clinical Utility of Sequencing Familial Hypercholesterolemia Genes in Patients With Severe Hypercholesterolemia. Journal of the American College of Cardiology, 2016, 67, 2578-2589.	1.2	723
20	Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature, 2015, 518, 102-106.	13.7	581
21	Long-Term Interleukin-6 Levels and Subsequent Risk of Coronary Heart Disease: Two New Prospective Studies and a Systematic Review. PLoS Medicine, 2008, 5, e78.	3.9	573
22	Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nature Genetics, 2017, 49, 1385-1391.	9.4	571
23	Genomic Risk Prediction of Coronary Artery Disease in 480,000 Adults. Journal of the American College of Cardiology, 2018, 72, 1883-1893.	1.2	557
24	A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nature Genetics, 2019, 51, 957-972.	9.4	549
25	Rare and low-frequency coding variants alter human adult height. Nature, 2017, 542, 186-190.	13.7	544
26	Genetics of blood lipids among ~300,000 multi-ethnic participants of the Million Veteran Program. Nature Genetics, 2018, 50, 1514-1523.	9.4	497
27	Exome-wide association study of plasma lipids in >300,000 individuals. Nature Genetics, 2017, 49, 1758-1766.	9.4	470
28	Association of Triglyceride-Lowering <i>LPL</i> Variants and LDL-C–Lowering <i>LDLR</i> Variants With Risk of Coronary Heart Disease. JAMA - Journal of the American Medical Association, 2019, 321, 364.	3.8	460
29	Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nature Genetics, 2020, 52, 680-691.	9.4	445
30	Association of Cholesteryl Ester Transfer Protein Genotypes With CETP Mass and Activity, Lipid Levels, and Coronary Risk. JAMA - Journal of the American Medical Association, 2008, 299, 2777.	3.8	443
31	Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science, 2016, 351, 1166-1171.	6.0	438
32	Association of <i>LPA</i> Variants With Risk of Coronary Disease and the Implications for Lipoprotein(a)-Lowering Therapies. JAMA Cardiology, 2018, 3, 619.	3.0	428
33	The Polygenic and Monogenic Basis of Blood Traits and Diseases. Cell, 2020, 182, 1214-1231.e11.	13.5	388
34	Inactivating Mutations in <i>NPC1L1</i> and Protection from Coronary Heart Disease. New England Journal of Medicine, 2014, 371, 2072-2082.	13.9	386
35	The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nature Genetics, 2016, 48, 1171-1184.	9.4	362
36	Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nature Genetics, 2018, 50, 559-571.	9.4	356

#	Article	lF	Citations
37	Trans-ethnic and Ancestry-Specific Blood-Cell Genetics in 746,667 Individuals from 5 Global Populations. Cell, 2020, 182, 1198-1213.e14.	13.5	353
38	New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nature Genetics, 2019, 51, 481-493.	9.4	350
39	ANGPTL3 Deficiency and Protection Against Coronary Artery Disease. Journal of the American College of Cardiology, 2017, 69, 2054-2063.	1.2	348
40	Phenome-wide Mendelian randomization mapping the influence of the plasma proteome on complex diseases. Nature Genetics, 2020, 52, 1122-1131.	9.4	298
41	Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels. Nature Communications, 2018, 9, 260.	5.8	295
42	Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation. Nature Genetics, 2015, 47, 1282-1293.	9.4	294
43	The Polygenic Score Catalog as an open database for reproducibility and systematic evaluation. Nature Genetics, 2021, 53, 420-425.	9.4	293
44	Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity. Nature, 2017, 544, 235-239.	13.7	292
45	Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nature Genetics, 2016, 48, 1151-1161.	9.4	261
46	Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms. Nature Genetics, 2017, 49, 1113-1119.	9.4	260
47	Association of Genetic Variants Related to CETP Inhibitors and Statins With Lipoprotein Levels and Cardiovascular Risk. JAMA - Journal of the American Medical Association, 2017, 318, 947.	3.8	247
48	Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption. Molecular Psychiatry, 2015, 20, 647-656.	4.1	235
49	Efficiency and safety of varying the frequency of whole blood donation (INTERVAL): a randomised trial of 45†000 donors. Lancet, The, 2017, 390, 2360-2371.	6.3	222
50	Genomeâ€wide mapping of plasma protein QTLs identifies putatively causal genes and pathways for cardiovascular disease. Nature Communications, 2018, 9, 3268.	5.8	221
51	Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease. Nature Genetics, 2017, 49, 1450-1457.	9.4	218
52	Mendelian Randomization Study of <i>ACLY</i> and Cardiovascular Disease. New England Journal of Medicine, 2019, 380, 1033-1042.	13.9	216
53	Systematic Evaluation of Pleiotropy Identifies 6 Further Loci Associated WithÂCoronary ArteryÂDisease. Journal of the American College of Cardiology, 2017, 69, 823-836.	1.2	214
54	Separate and combined associations of obesity and metabolic health with coronary heart disease: a pan-European case-cohort analysis. European Heart Journal, 2018, 39, 397-406.	1.0	209

#	Article	IF	CITATIONS
55	Identification of novel risk loci for restless legs syndrome in genome-wide association studies in individuals of European ancestry: a meta-analysis. Lancet Neurology, The, 2017, 16, 898-907.	4.9	191
56	Cardiovascular Risk Factors Associated With Venous Thromboembolism. JAMA Cardiology, 2019, 4, 163.	3.0	187
57	Phenotypic Characterization of GeneticallyÂLowered Human Lipoprotein(a) Levels. Journal of the American College of Cardiology, 2016, 68, 2761-2772.	1.2	186
58	Apolipoprotein(a) isoform size, lipoprotein(a) concentration, and coronary artery disease: a mendelian randomisation analysis. Lancet Diabetes and Endocrinology, the, 2017, 5, 524-533.	5.5	165
59	Big data from electronic health records for early and late translational cardiovascular research: challenges and potential. European Heart Journal, 2018, 39, 1481-1495.	1.0	163
60	Association Between Depressive Symptoms and Incident Cardiovascular Diseases. JAMA - Journal of the American Medical Association, 2020, 324, 2396.	3.8	152
61	Genome-wide association studies in the Japanese population identify seven novel loci for type 2 diabetes. Nature Communications, 2016, 7, 10531.	5.8	149
62	Association of Rare and Common Variation in the Lipoprotein Lipase Gene With Coronary Artery Disease. JAMA - Journal of the American Medical Association, 2017, 317, 937.	3.8	148
63	Lifestyle factors and risk of multimorbidity of cancer and cardiometabolic diseases: a multinational cohort study. BMC Medicine, 2020, 18, 5.	2.3	148
64	Association of Genetic Variants Related to Combined Exposure to Lower Low-Density Lipoproteins and Lower Systolic Blood Pressure With Lifetime Risk of Cardiovascular Disease. JAMA - Journal of the American Medical Association, 2019, 322, 1381.	3.8	144
65	Causal Assessment of Serum Urate Levels inÂCardiometabolic Diseases Through a Mendelian Randomization Study. Journal of the American College of Cardiology, 2016, 67, 407-416.	1.2	138
66	Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria. Nature Communications, 2019, 10, 4130.	5.8	133
67	Genomic risk score offers predictive performance comparable to clinical risk factors for ischaemic stroke. Nature Communications, 2019, 10, 5819.	5.8	124
68	Actionable druggable genome-wide Mendelian randomization identifies repurposing opportunities for COVID-19. Nature Medicine, 2021, 27, 668-676.	15.2	120
69	Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length. American Journal of Human Genetics, 2020, 106, 389-404.	2.6	118
70	A cross-platform approach identifies genetic regulators of human metabolism and health. Nature Genetics, 2021, 53, 54-64.	9.4	117
71	The INTERVAL trial to determine whether intervals between blood donations can be safely and acceptably decreased to optimise blood supply: study protocol for a randomised controlled trial. Trials, 2014, 15, 363.	0.7	112
72	Consumption of Meat, Fish, Dairy Products, and Eggs and Risk of Ischemic Heart Disease. Circulation, 2019, 139, 2835-2845.	1.6	103

#	Article	IF	CITATIONS
73	A missense variant in Mitochondrial Amidoxime Reducing Component 1 gene and protection against liver disease. PLoS Genetics, 2020, 16, e1008629.	1.5	101
74	A genomic approach to therapeutic target validation identifies a glucose-lowering <i>GLP1R</i> variant protective for coronary heart disease. Science Translational Medicine, 2016, 8, 341ra76.	5.8	100
75	Equalization of four cardiovascular risk algorithms after systematic recalibration: individual-participant meta-analysis of 86 prospective studies. European Heart Journal, 2019, 40, 621-631.	1.0	97
76	Polygenic risk scores in cardiovascular risk prediction: A cohort study and modelling analyses. PLoS Medicine, 2021, 18, e1003498.	3.9	95
77	EPIC-Heart: The cardiovascular component of a prospective study of nutritional, lifestyle and biological factors in 520,000 middle-aged participants from 10 European countries. European Journal of Epidemiology, 2007, 22, 129-141.	2.5	91
78	Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals. Nature Genetics, 2020, 52, 1314-1332.	9.4	91
79	Genome-wide association study for circulating levels of PAI-1 provides novel insights into its regulation. Blood, 2012, 120, 4873-4881.	0.6	90
80	Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution. Nature Genetics, 2019, 51, 452-469.	9.4	89
81	Phenotypic Consequences of a Genetic Predisposition to Enhanced Nitric Oxide Signaling. Circulation, 2018, 137, 222-232.	1.6	87
82	Assessing the causal association of glycine with risk of cardio-metabolic diseases. Nature Communications, 2019, 10, 1060.	5.8	85
83	The Pakistan Risk of Myocardial Infarction Study: a resource for the study of genetic, lifestyle and other determinants of myocardial infarction in South Asia. European Journal of Epidemiology, 2009, 24, 329-338.	2.5	83
84	Meta-analysis of up to 622,409 individuals identifies 40 novel smoking behaviour associated genetic loci. Molecular Psychiatry, 2020, 25, 2392-2409.	4.1	83
85	Analysis of predicted loss-of-function variants in UK Biobank identifies variants protective for disease. Nature Communications, 2018, 9, 1613.	5.8	78
86	Validation of a Genome-Wide PolygenicÂScore for Coronary ArteryÂDisease inÂSouth Asians. Journal of the American College of Cardiology, 2020, 76, 703-714.	1.2	76
87	Association of plasma biomarkers of fruit and vegetable intake with incident type 2 diabetes: EPIC-InterAct case-cohort study in eight European countries. BMJ, The, 2020, 370, m2194.	3.0	75
88	Alcohol intake in relation to non-fatal and fatal coronary heart disease and stroke: EPIC-CVD case-cohort study. BMJ: British Medical Journal, 2018, 361, k934.	2.4	70
89	Automated typing of red blood cell and platelet antigens: a whole-genome sequencing study. Lancet Haematology,the, 2018, 5, e241-e251.	2.2	70
90	Metabolomic Consequences of Genetic Inhibition of PCSK9 Compared With Statin Treatment. Circulation, 2018, 138, 2499-2512.	1.6	69

#	Article	IF	Citations
91	Plasma Vitamin C and Type 2 Diabetes: Genome-Wide Association Study and Mendelian Randomization Analysis in European Populations. Diabetes Care, 2021, 44, 98-106.	4.3	68
92	Association of Multiple Biomarkers of Iron Metabolism and Type 2 Diabetes: The EPIC-InterAct Study. Diabetes Care, 2016, 39, 572-581.	4.3	65
93	Parity, breastfeeding and risk of coronary heart disease: A pan-European case–cohort study. European Journal of Preventive Cardiology, 2016, 23, 1755-1765.	0.8	58
94	Genetic Risk Score for CoronaryÂDiseaseÂldentifies Predispositions to Cardiovascular andÂNoncardiovascular Diseases. Journal of the American College of Cardiology, 2019, 73, 2932-2942.	1.2	58
95	Rare Protein-Truncating Variants in <i>APOB</i> , Lower Low-Density Lipoprotein Cholesterol, and Protection Against Coronary Heart Disease. Circulation Genomic and Precision Medicine, 2019, 12, e002376.	1.6	57
96	An Unbiased Lipid Phenotyping Approach To Study the Genetic Determinants of Lipids and Their Association with Coronary Heart Disease Risk Factors. Journal of Proteome Research, 2019, 18, 2397-2410.	1.8	55
97	Genome-Wide Association Analysis of Young-Onset Stroke Identifies a Locus on Chromosome 10q25 Near <i>HABP2</i> . Stroke, 2016, 47, 307-316.	1.0	54
98	Formalising recall by genotype as an efficient approach to detailed phenotyping and causal inference. Nature Communications, 2018, 9, 711.	5.8	54
99	Platelet function is modified by common sequence variation in megakaryocyte super enhancers. Nature Communications, 2017, 8, 16058.	5.8	50
100	Interleukin-6 Receptor Signaling and Abdominal Aortic Aneurysm Growth Rates. Circulation Genomic and Precision Medicine, 2019, 12, e002413.	1.6	46
101	The association between circulating 25-hydroxyvitamin D metabolites and type 2 diabetes in European populations: AÂmeta-analysis and Mendelian randomisation analysis. PLoS Medicine, 2020, 17, e1003394.	3.9	45
102	Heterozygous <i>ABCG5</i> Gene Deficiency and Risk of Coronary Artery Disease. Circulation Genomic and Precision Medicine, 2020, 13, 417-423.	1.6	45
103	Integrative analysis of the plasma proteome and polygenic risk of cardiometabolic diseases. Nature Metabolism, 2021, 3, 1476-1483.	5.1	43
104	Mitochondrial DNA variants modulate N-formylmethionine, proteostasis and risk of late-onset human diseases. Nature Medicine, 2021, 27, 1564-1575.	15.2	40
105	Neutrophil-mediated IL-6 receptor trans-signaling and the risk of chronic obstructive pulmonary disease and asthma. Human Molecular Genetics, 2017, 26, 1584-1596.	1.4	36
106	Mendelian randomization supports bidirectional causality between telomere length and clonal hematopoiesis of indeterminate potential. Science Advances, 2022, 8, eabl6579.	4.7	36
107	Cohort-wide deep whole genome sequencing and the allelic architecture of complex traits. Nature Communications, 2018, 9, 4674.	5.8	33
108	Metabolic profiling of angiopoietin-like protein 3 and 4 inhibition: a drug-target Mendelian randomization analysis. European Heart Journal, 2021, 42, 1160-1169.	1.0	33

#	Article	IF	CITATIONS
109	Genetically modulated educational attainment and coronary disease risk. European Heart Journal, 2019, 40, 2413-2420.	1.0	32
110	Sequence data and association statistics from 12,940 type 2 diabetes cases and controls. Scientific Data, 2017, 4, 170179.	2.4	31
111	DNA Sequence Variation in <i>ACVR1C</i> Encoding the Activin Receptor-Like Kinase 7 Influences Body Fat Distribution and Protects Against Type 2 Diabetes. Diabetes, 2019, 68, 226-234.	0.3	31
112	Development and validation of a universal blood donor genotyping platform: a multinational prospective study. Blood Advances, 2020, 4, 3495-3506.	2.5	31
113	Lipoprotein signatures of cholesteryl ester transfer protein and HMG-CoA reductase inhibition. PLoS Biology, 2019, 17, e3000572.	2.6	29
114	Antibiotics in the prevention of heart attacks. Lancet, The, 2005, 365, 365-7.	6.3	26
115	The Bangladesh Risk of Acute Vascular Events (BRAVE) Study: objectives and design. European Journal of Epidemiology, 2015, 30, 577-587.	2.5	25
116	Association of Plasma Vitamin D Metabolites With Incident Type 2 Diabetes: EPIC-InterAct Case-Cohort Study. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 1293-1303.	1.8	25
117	Genome-wide analysis of blood lipid metabolites in over 5000 South Asians reveals biological insights at cardiometabolic disease loci. BMC Medicine, 2021, 19, 232.	2.3	25
118	Rare coding variants in 35 genes associate with circulating lipid levelsâ€"A multi-ancestry analysis of 170,000 exomes. American Journal of Human Genetics, 2022, 109, 81-96.	2.6	24
119	Genetic invalidation of Lp-PLA2 as a therapeutic target: Large-scale study of five functional Lp-PLA2-lowering alleles. European Journal of Preventive Cardiology, 2017, 24, 492-504.	0.8	22
120	Glycemic index, glycemic load, and risk of coronary heart disease: a pan-European cohort study. American Journal of Clinical Nutrition, 2020, 112, 631-643.	2.2	19
121	Recruitment and representativeness of blood donors in the INTERVAL randomised trial assessing varying inter-donation intervals. Trials, 2016, 17, 458.	0.7	17
122	Longer-term efficiency and safety of increasing the frequency of whole blood donation (INTERVAL): extension study of a randomised trial of 20†757 blood donors. Lancet Haematology,the, 2019, 6, e510-e520.	2.2	17
123	Accuracy of four lateral flow immunoassays for anti SARS-CoV-2 antibodies: a head-to-head comparative study. EBioMedicine, 2021, 68, 103414.	2.7	17
124	Whole-exome sequencing identifies rare genetic variants associated with human plasma metabolites. American Journal of Human Genetics, 2022, 109, 1038-1054.	2.6	17
125	Information and Risk Modification Trial (INFORM): design of a randomised controlled trial of communicating different types of information about coronary heart disease risk, alongside lifestyle advice, to achieve change in health-related behaviour. BMC Public Health, 2015, 15, 868.	1.2	13
126	Comparison of four methods to measure haemoglobin concentrations in whole blood donors (<scp>COMPARE</scp>): A diagnostic accuracy study. Transfusion Medicine, 2021, 31, 94-103.	0.5	13

#	Article	IF	Citations
127	Plant foods, dietary fibre and risk of ischaemic heart disease in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. International Journal of Epidemiology, 2021, 50, 212-222.	0.9	12
128	ACE inhibition and cardiometabolic risk factors, lung <i>ACE2</i> and <i>TMPRSS2</i> gene expression, and plasma ACE2 levels: a Mendelian randomization study. Royal Society Open Science, 2020, 7, 200958.	1.1	12
129	Risk factors and prediction models for incident heart failure with reduced and preserved ejection fraction. ESC Heart Failure, 2021, , .	1.4	9
130	Machine learning optimized polygenic scores for blood cell traits identify sex-specific trajectories and genetic correlations with disease. Cell Genomics, 2022, 2, 100086.	3.0	9
131	Physical activity attenuates but does not eliminate coronary heart disease risk amongst adults with risk factors: EPIC-CVD case-cohort study. European Journal of Preventive Cardiology, 2022, 29, 1618-1629.	0.8	8
132	Elucidating mechanisms of genetic cross-disease associations at the PROCR vascular disease locus. Nature Communications, 2022, 13, 1222.	5.8	5
133	Commentary on "A meta-analysis but not a systematic review: an evaluation of the Global BMI Mortality Collaboration― Journal of Clinical Epidemiology, 2017, 88, 30-32.	2.4	4
134	Body-mass index and all-cause mortality – Authors' reply. Lancet, The, 2017, 389, 2285-2286.	6.3	4
135	Metabolic mediators of body-mass index and cardiovascular risk. Lancet, The, 2014, 383, 2042-2043.	6.3	3
136	Risk thresholds for alcohol consumption – Authors' reply. Lancet, The, 2018, 392, 2167-2168.	6.3	3
137	Validation of self-administered nasal swabs and postage for the isolation of Staphylococcus aureus. Journal of Medical Microbiology, 2016, 65, 1434-1437.	0.7	3
138	Insights into the genetic architecture of haematological traits from deep phenotyping and whole-genome sequencing for two Mediterranean isolated populations. Scientific Reports, 2022, 12, 1131.	1.6	2
139	Investigating Genetic and Other Determinants of First-Onset Myocardial Infarction in Malaysia: Protocol for the Malaysian Acute Vascular Events Risk Study. JMIR Research Protocols, 2022, 11, e31885.	0.5	1
140	Analyzing human knockouts to validate GPR151 as a therapeutic target for reduction of body mass index. PLoS Genetics, 2022, 18, e1010093.	1.5	1
141	Response to Letter Regarding Article, "Adiponectin and Coronary Heart Disease: A Prospective Study and Meta-Analysis― Circulation, 2007, 115, .	1.6	0
142	Lessons from the INTERVAL study – Authors' reply. Lancet, The, 2018, 391, 2606.	6.3	0
143	Abstract 567: Causal Assessment of Uric Acid and Risk of Myocardial Infarction, a Mendelian Randomization Study. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, .	1.1	0
144	Abstract 18321 : Analysis of a Consanguineous Cohort to Identify and Characterize Human Knockouts. Circulation, $2015,132,$	1.6	0

#	Article	IF	CITATIONS
145	Abstract 19506: Relevance of Fibroblast Growth Factor 21 in Cardio-metabolic Diseases. Circulation, 2015, 132, .	1.6	O