Carmine De Angelis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7735481/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Treatment landscape of triple-negative breast cancer — expanded options, evolving needs. Nature Reviews Clinical Oncology, 2022, 19, 91-113.	12.5	414
2	Interferon Signaling in Estrogen Receptor–positive Breast Cancer: A Revitalized Topic. Endocrinology, 2022, 163, .	1.4	16
3	NPY1R exerts inhibitory action on estradiol-stimulated growth and predicts endocrine sensitivity and better survival in ER-positive breast cancer. Scientific Reports, 2022, 12, 1972.	1.6	7
4	Abstract PD1-05: Targeting the FRA1-dependent transcriptional nexus in high FOXA1-driven endocrine-resistant and metastatic breast cancer. Cancer Research, 2022, 82, PD1-05-PD1-05.	0.4	0
5	Modeling the Prognostic Impact of Circulating Tumor Cells Enumeration in Metastatic Breast Cancer for Clinical Trial Design Simulation. Oncologist, 2022, 27, e561-e570.	1.9	5
6	Prognostic Relevance of Progesterone Receptor Levels in Early Luminal-Like HER2 Negative Breast Cancer Subtypes: A Retrospective Analysis. Frontiers in Oncology, 2022, 12, 813462.	1.3	2
7	Definition of High-Risk Early Hormone-Positive HER2â^'Negative Breast Cancer: A Consensus Review. Cancers, 2022, 14, 1898.	1.7	20
8	Evaluation of a Four-Gene Panel for Hereditary Cancer Risk Assessment. Genes, 2022, 13, 682.	1.0	1
9	Prevalence of Sarcopenia in Women with Breast Cancer. Nutrients, 2022, 14, 1839.	1.7	9
10	Impaired seroconversion after SARS-COV-2 mRNA vaccine in patients with thymic epithelial tumors Journal of Clinical Oncology, 2022, 40, 8588-8588.	0.8	0
11	Effect of mevalonate pathway inhibitors on outcomes of patients (pts) with HER2-positive early breast cancer (BC) in the ALTTO trial Journal of Clinical Oncology, 2022, 40, 522-522.	0.8	0
12	A review of the use of next generation sequencing methodologies to identify biomarkers of resistance to CDK4/6 inhibitors in ER+/HER2- breast cancer. Critical Reviews in Oncology/Hematology, 2021, 157, 103191.	2.0	9
13	Abstract PS5-29: Insights into the molecular underpinnings of the mevalonate pathway-YAP/TAZ-driven anti-HER2 therapy resistance in HER2+ breast cancer (BC). , 2021, , .		0
14	Activation of the IFN Signaling Pathway is Associated with Resistance to CDK4/6 Inhibitors and Immune Checkpoint Activation in ER-Positive Breast Cancer. Clinical Cancer Research, 2021, 27, 4870-4882.	3.2	49
15	Abstract PD8-03: A FOXA1/FRA1-centered transcriptional axis regulates interferon signaling in high FOXA1-associated endocrine-resistant and metastatic breast cancer. , 2021, , .		1
16	Case Report: Detection of a Novel Germline PALB2 Deletion in a Young Woman With Hereditary Breast Cancer: When the Patient's Phenotype History Doesn't Lie. Frontiers in Oncology, 2021, 11, 602523.	1.3	4
17	Neratinib plus trastuzumab is superior to pertuzumab plus trastuzumab in HER2-positive breast cancer xenograft models. Npj Breast Cancer, 2021, 7, 63.	2.3	4
18	A novel role of ADGRF1 (GPR110) in promoting cellular quiescence and chemoresistance in human epidermal growth factor receptor 2â€positive breast cancer. FASEB Journal, 2021, 35, e21719.	0.2	13

CARMINE DE ANGELIS

#	Article	IF	CITATIONS
19	BRCA1/2 NGS Somatic Testing in Clinical Practice: A Short Report. Genes, 2021, 12, 1917.	1.0	2
20	HER2-Enriched Subtype and ERBB2 Expression in HER2-Positive Breast Cancer Treated with Dual HER2 Blockade. Journal of the National Cancer Institute, 2020, 112, 46-54.	3.0	97
21	Evaluation of the Predictive Role of Tumor Immune Infiltrate in Patients with HER2-Positive Breast Cancer Treated with Neoadjuvant Anti-HER2 Therapy without Chemotherapy. Clinical Cancer Research, 2020, 26, 738-745.	3.2	31
22	Immune Response Against Head and Neck Cancer: Biological Mechanisms and Implication on Therapy. Translational Oncology, 2020, 13, 262-274.	1.7	49
23	Towards personalized treatment for early stage HER2-positive breast cancer. Nature Reviews Clinical Oncology, 2020, 17, 233-250.	12.5	166
24	TBCRC023: A Randomized Phase II Neoadjuvant Trial of Lapatinib Plus Trastuzumab Without Chemotherapy for 12 versus 24 Weeks in Patients with HER2-Positive Breast Cancer. Clinical Cancer Research, 2020, 26, 821-827.	3.2	40
25	Optimising triage procedures for patients with cancer needing active anticancer treatment in the COVID-19 era. ESMO Open, 2020, 5, e000885.	2.0	9
26	Enhancer reprogramming driven by high-order assemblies of transcription factors promotes phenotypic plasticity and breast cancer endocrine resistance. Nature Cell Biology, 2020, 22, 701-715.	4.6	84
27	Metabolic syndrome and early stage breast cancer outcome: results from a prospective observational study. Breast Cancer Research and Treatment, 2020, 182, 401-409.	1.1	27
28	Estrogen-induced transcription at individual alleles is independent of receptor level and active conformation but can be modulated by coactivators activity. Nucleic Acids Research, 2020, 48, 1800-1810.	6.5	15
29	Abstract GS2-01: High levels of interferon-response gene signatures are associated withde novoand acquired resistance to CDK4/6 inhibitors in ER+ breast cancer. , 2020, , .		2
30	A multiparameter classifier to predict response to lapatinib plus trastuzumab (LT) without chemotherapy in HER2+ breast cancer (BC) Journal of Clinical Oncology, 2020, 38, 1011-1011.	0.8	4
31	Palbociclib added to ongoing endocrine therapy for hormone receptor‑positive HER2‑negative metastatic breast cancer: A case report series. Molecular and Clinical Oncology, 2020, 12, 456-460.	0.4	1
32	Abstract PD7-01: Identification of a high FOXA1-induced pro-metastatic enhancer signature in endocrine-resistant and metastatic breast cancer. , 2020, , .		0
33	Abstract PD2-02: Activation of the EGFR/RAS/p42,44 MAPK axis as a convergent mechanism of resistance to CDK4/6 inhibitors in ER+ breast cancer. , 2020, , .		0
34	Abstract P3-06-07: ADGRF1 overexpression inhibits tumor growthin vivoby inducing cell cycle arrest in HER2+ breast cancer. , 2020, , .		0
35	Abstract P6-04-02: Integrative cistromic/transcriptomic profiling identifies a high FOXA1/ER-activated pro-metastatic secretome in endocrine-resistant breast cancer. , 2020, , .		0
36	A CTC-Cluster-Specific Signature Derived from OMICS Analysis of Patient-Derived Xenograft Tumors Predicts Outcomes in Basal-Like Breast Cancer. Journal of Clinical Medicine, 2019, 8, 1772.	1.0	36

#	Article	IF	CITATIONS
37	Targeting the Mevalonate Pathway to Overcome Acquired Anti-HER2 Treatment Resistance in Breast Cancer. Molecular Cancer Research, 2019, 17, 2318-2330.	1.5	41
38	A combinatorial biomarker predicts pathologic complete response to neoadjuvant lapatinib and trastuzumab without chemotherapy in patients with HER2+ breast cancer. Annals of Oncology, 2019, 30, 927-933.	0.6	37
39	Circulating tumor cell investigation in breast cancer patient-derived xenograft models by automated immunofluorescence staining, image acquisition, and single cell retrieval and analysis. BMC Cancer, 2019, 19, 220.	1.1	19
40	FOXA1 upregulation promotes enhancer and transcriptional reprogramming in endocrine-resistant breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26823-26834.	3.3	103
41	Ribociclib in HR+/HER2â^' Advanced or Metastatic Breast Cancer Patients. Annals of Pharmacotherapy, 2019, 53, 501-509.	0.9	15
42	The oral selective oestrogen receptor degrader (SERD) AZD9496 is comparable to fulvestrant in antagonising ER and circumventing endocrine resistance. British Journal of Cancer, 2019, 120, 331-339.	2.9	48
43	Neratinib in HER2-Positive Breast Cancer Patients. Annals of Pharmacotherapy, 2019, 53, 612-620.	0.9	22
44	Molecular Mechanisms of Endocrine Resistance. Cancer Drug Discovery and Development, 2019, , 265-307.	0.2	5
45	Abstract 3012: Single-cell transcriptomic characterization of luminal breast cancer cell lines with acquired resistance to the CDK4/6 inhibitor palbociclib. , 2019, , .		0
46	Abstract 3044: The role of GPR110 in tumorigenicity, tumor cell dissemination, and cell cycle regulation in HER2+ breast cancer. , 2019, , .		0
47	Abstract 4827: The therapeutic superiority of neratinib in combination with trastuzumab compared to pertuzumab plus trastuzumab in HER2-positive <i>in vivo</i> breast cancer models. , 2019, , .		0
48	Abstract 2783: <i>OMICS</i> analysis of breast cancer PDX tumors to determine CTC-cluster-specific signature in predicting breast cancer metastasis. , 2019, , .		0
49	Adjuvant anastrozole versus exemestane versus letrozole, upfront or after 2 years of tamoxifen, in endocrine-sensitive breast cancer (FATA-GIM3): a randomised, phase 3 trial. Lancet Oncology, The, 2018, 19, 474-485.	5.1	59
50	GPCRs profiling and identification of GPR110 as a potential new target in HER2+ breast cancer. Breast Cancer Research and Treatment, 2018, 170, 279-292.	1.1	22
51	Tamoxifen Resistance in Breast Cancer Is Regulated by the EZH2–ERα–GREB1 Transcriptional Axis. Cancer Research, 2018, 78, 671-684.	0.4	80
52	Low PTEN levels and PIK3CA mutations predict resistance to neoadjuvant lapatinib and trastuzumab without chemotherapy in patients with HER2 over-expressing breast cancer. Breast Cancer Research and Treatment, 2018, 167, 731-740.	1.1	71
53	Cyclin E1 and Rb modulation as common events at time of resistance to palbociclib in hormone receptor-positive breast cancer. Npj Breast Cancer, 2018, 4, 38.	2.3	78
54	HER2-enriched subtype and ERBB2 mRNA as predictors of pathological complete response following trastuzumab and lapatinib without chemotherapy in early-stage HER2-positive breast cancer: A combined analysis of TBCRC006/023 and PAMELA trials Journal of Clinical Oncology, 2018, 36, 509-509.	0.8	10

CARMINE DE ANGELIS

#	Article	IF	CITATIONS
55	Imaging tests in staging and surveillance of non-metastatic breast cancer: changes in routine clinical practice and cost implications. British Journal of Cancer, 2017, 116, 821-827.	2.9	14
56	Embryonic transcription factor SOX9 drives breast cancer endocrine resistance. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4482-E4491.	3.3	83
57	HER2 Reactivation through Acquisition of the HER2 L755S Mutation as a Mechanism of Acquired Resistance to HER2-targeted Therapy in HER2+ Breast Cancer. Clinical Cancer Research, 2017, 23, 5123-5134.	3.2	85
58	Pretreatment Serum Concentration of Vitamin D and Breast Cancer Characteristics: A Prospective Observational Mediterranean Study. Clinical Breast Cancer, 2017, 17, 559-563.	1.1	12
59	The Evolving Role of the Estrogen Receptor Mutations in Endocrine Therapy-Resistant Breast Cancer. Current Oncology Reports, 2017, 19, 35.	1.8	80
60	PTK6 regulates growth and survival of endocrine therapy-resistant ER+ breast cancer cells. Npj Breast Cancer, 2017, 3, 45.	2.3	21
61	De-escalation of treatment in HER2-positive breast cancer: Determinants of response and mechanisms of resistance. Breast, 2017, 34, S19-S26.	0.9	46
62	Chemotherapy versus endocrine therapy as first-line treatment in patients with luminal-like HER2-negative metastatic breast cancer: AÂpropensity score analysis. Breast, 2017, 31, 114-120.	0.9	49
63	Combined effect of obesity and diabetes on early breast cancer outcome: a prospective observational study. Oncotarget, 2017, 8, 115709-115717.	0.8	18
64	Luminal-like HER2-negative stage IA breast cancer: a multicenter retrospective study on long-term outcome with propensity score analysis. Oncotarget, 2017, 8, 112816-112824.	0.8	3
65	Tumor characteristics and prognosis in familial breast cancer. BMC Cancer, 2016, 16, 924.	1.1	24
66	FOXA1 overexpression mediates endocrine resistance by altering the ER transcriptome and IL-8 expression in ER-positive breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6600-E6609.	3.3	119
67	Blockade of AP-1 Potentiates Endocrine Therapy and Overcomes Resistance. Molecular Cancer Research, 2016, 14, 470-481.	1.5	39
68	Evaluation of tumor immune infiltrate as a determinant of response to neo-adjuvant lapatinib and trastuzumab (LT) in HER2-positive (+) breast cancer (BC) Journal of Clinical Oncology, 2016, 34, 608-608.	0.8	1
69	What Medical Oncologist Residents Think about the Italian Speciality Schools: A Survey of the Italian Association of Medical Oncology (AIOM) on Educational, Clinical and Research Activities. PLoS ONE, 2016, 11, e0159146.	1.1	3
70	Metabolic and anthropometric changes in early breast cancer patients receiving adjuvant therapy. Breast Cancer Research and Treatment, 2015, 154, 127-132.	1.1	33
71	Resistance to Anti-HER2 Therapies in Breast Cancer. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2015, , e157-e164.	1.8	24
72	Upregulation of ER Signaling as an Adaptive Mechanism of Cell Survival in HER2-Positive Breast Tumors Treated with Anti-HER2 Therapy. Clinical Cancer Research, 2015, 21, 3995-4003.	3.2	82

CARMINE DE ANGELIS

#	Article	IF	CITATIONS
73	ESR1 mutations—a mechanism for acquired endocrine resistance in breast cancer. Nature Reviews Clinical Oncology, 2015, 12, 573-583.	12.5	458
74	Nab-paclitaxel for the management of triple-negative metastatic breast cancer. Anti-Cancer Drugs, 2015, 26, 117-122.	0.7	8
75	The changing role of ER in endocrine resistance. Breast, 2015, 24, S60-S66.	0.9	97
76	Abstract P5-05-03: Clonal evolution of the HER2 L755S mutation leads to acquired HER-targeted therapy resistance that can be reversed by the irreversible HER1/2 inhibitor afatinib. , 2015, , .		0
77	Endocrine therapy and chemotherapy in luminal metastatic breast cancer Journal of Clinical Oncology, 2015, 33, e11573-e11573.	0.8	0
78	Abstract 737: Clonal evolution of the HER2 L755S mutation as a mechanism of acquired HER-targeted therapy resistance. , 2015, , .		0
79	Abstract LB-166: PARP inhibition effects on endocrine therapy and resistance in estrogen receptor positive (ER+) breast cancer models. , 2015, , .		0
80	Breast cancer subtypes according to body mass index and insulin resistance Journal of Clinical Oncology, 2014, 32, 571-571.	0.8	5
81	PO70 CLINICAL BENEFIT OF FULVESTRANT IN POSTMENOPAUSAL WOMEN WITH ADVANCED BREAST CANCER ACCORDING TO PRIOR THERAPY. Breast, 2013, 22, S44.	0.9	0
82	Combination of Cytotoxic Drugs for Patients with HER2-Negative Metastatic Breast Cancer. Combination Products in Therapy, 2013, 3, 25-37.	1.1	1
83	Long-term disease control with lapatinib and capecitabine in a patient with HER2-positive metastatic breast cancer pretreated with trastuzumab and trastuzumab-emtansine. Tumori, 2013, 99, e131-e133.	0.6	2
84	Clinical benefit of fulvestrant in postmenopausal women with advanced breast cancer according to prior therapy Journal of Clinical Oncology, 2013, 31, e11528-e11528.	0.8	0
85	Clinical and biologic features of triple-negative breast cancers in a large cohort of patients with long-term follow-up. Breast Cancer Research and Treatment, 2012, 136, 795-804.	1.1	175
86	Overcoming Treatment Resistance in HER2-Positive Breast Cancer. Drugs, 2012, 72, 1175-1193.	4.9	38
87	Breast cancer prognosis in <i>BRCA1/2Â </i> mutation carriers: A case control study Journal of Clinical Oncology, 2012, 30, 1554-1554.	0.8	0
88	Molecular Mechanism and Clinical Implications of Endocrine Therapy Resistance in Breast Cancer. Oncology, 2009, 77, 23-37.	0.9	47