
Dingyong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7735170/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Distribution Patterns of Inorganic Mercury and Methylmercury in Tissues of Rice (<i>Oryza sativa) Tj ETQq1 1 0.7 2010, 58, 4951-4958.</i>	84314 rgE 5.2	T /Overlock 183
2	Mercury methylation by anaerobic microorganisms: A review. Critical Reviews in Environmental Science and Technology, 2019, 49, 1893-1936.	12.8	114
3	Influence of dissolved organic matter (DOM) characteristics on dissolved mercury (Hg) species composition in sediment porewater of lakes from southwest China. Water Research, 2018, 146, 146-158.	11.3	113
4	Mercury methylation in rice paddies and its possible controlling factors in the Hg mining area, Guizhou province, Southwest China. Environmental Pollution, 2016, 215, 1-9.	7.5	111
5	Characteristics of dissolved organic matter (DOM) and relationship with dissolved mercury in Xiaoqing River-Laizhou Bay estuary, Bohai Sea, China. Environmental Pollution, 2017, 223, 19-30.	7.5	90
6	Release flux of mercury from different environmental surfaces in Chongqing, China. Chemosphere, 2006, 64, 1845-1854.	8.2	80
7	Composition of dissolved organic matter (DOM) from periodically submerged soils in the Three Gorges Reservoir areas as determined by elemental and optical analysis, infrared spectroscopy, pyrolysis-GC–MS and thermally assisted hydrolysis and methylation. Science of the Total Environment, 2017, 603-604, 461-471.	8.0	80
8	Mercury methylation in paddy soil: source and distribution of mercury species at a Hg mining area, Guizhou Province, China. Biogeosciences, 2016, 13, 2429-2440.	3.3	72
9	Inorganic mercury accumulation in rice (<i>Oryza sativa</i> L.). Environmental Toxicology and Chemistry, 2012, 31, 2093-2098.	4.3	69
10	Influences of the alternation of wet-dry periods on the variability of chromophoric dissolved organic matter in the water level fluctuation zone of the Three Gorges Reservoir area, China. Science of the Total Environment, 2018, 636, 249-259.	8.0	62
11	Modeling of the structure-specific kinetics of abiotic, dark reduction of Hg(II) complexed by O/N and S functional groups in humic acids while accounting for time-dependent structural rearrangement. Geochimica Et Cosmochimica Acta, 2015, 154, 151-167.	3.9	61
12	Estimation of mercury emission from different sources to atmosphere in Chongqing, China. Science of the Total Environment, 2006, 366, 722-728.	8.0	57
13	Spatial and temporal distribution of gaseous elemental mercury in Chongqing, China. Environmental Monitoring and Assessment, 2009, 156, 479-489.	2.7	53
14	Mercury in rice paddy fields and how does some agricultural activities affect the translocation and transformation of mercury - A critical review. Ecotoxicology and Environmental Safety, 2020, 202, 110950.	6.0	53
15	Mercury in rice (Oryza sativa L.) and rice-paddy soils under long-term fertilizer and organic amendment. Ecotoxicology and Environmental Safety, 2018, 150, 116-122.	6.0	51
16	Dynamics of dissolved organic matter (DOM) in a typical inland lake of the Three Gorges Reservoir area: Fluorescent properties and their implications for dissolved mercury species. Journal of Environmental Management, 2018, 206, 418-429.	7.8	50
17	Mercury-methylating genes dsrB and hgcA in soils/sediments of the Three Gorges Reservoir. Environmental Science and Pollution Research, 2017, 24, 5001-5011.	5.3	47
18	Effect of dissolved organic matter on adsorption and desorption of mercury by soils. Journal of Environmental Sciences, 2008, 20, 1097-1102.	6.1	44

#	Article	IF	CITATIONS
19	Bioaccumulation characteristics of mercury in fish in the Three Gorges Reservoir, China. Environmental Pollution, 2018, 243, 115-126.	7.5	44
20	Characteristics of archaea and bacteria in rice rhizosphere along a mercury gradient. Science of the Total Environment, 2019, 650, 1640-1651.	8.0	42
21	Water level fluctuations influence microbial communities and mercury methylation in soils in the Three Gorges Reservoir, China. Journal of Environmental Sciences, 2018, 68, 206-217.	6.1	41
22	Mercury in some chemical fertilizers and the effect of calcium superphosphate on mercury uptake by corn seedlings (Zea mays L.). Journal of Environmental Sciences, 2010, 22, 1184-1188.	6.1	37
23	Mercury fluxes from air/surface interfaces in paddy field and dry land. Applied Geochemistry, 2011, 26, 249-255.	3.0	35
24	A simulation study of inorganic sulfur cycling in the water level fluctuation zone of the Three Gorges Reservoir, China and the implications for mercury methylation. Chemosphere, 2017, 166, 31-40.	8.2	35
25	Does biochar inhibit the bioavailability and bioaccumulation of As and Cd in co-contaminated soils? A meta-analysis. Science of the Total Environment, 2021, 762, 143117.	8.0	35
26	Gaseous mercury emissions from subtropical forested and open field soils in a national nature reserve, southwest China. Atmospheric Environment, 2013, 64, 116-123.	4.1	34
27	Mercury dynamics and mass balance in a subtropical forest, southwestern China. Atmospheric Chemistry and Physics, 2016, 16, 4529-4537.	4.9	34
28	Biotic and Abiotic Degradation of Methylmercury in Aquatic Ecosystems: A Review. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 605-611.	2.7	33
29	Assessment of long-term effects from cage culture practices on heavy metal accumulation in sediment and fish. Ecotoxicology and Environmental Safety, 2020, 194, 110433.	6.0	33
30	Wet deposition fluxes of total mercury and methylmercury in core urban areas, Chongqing, China. Atmospheric Environment, 2014, 92, 87-96.	4.1	32
31	Atmospheric mercury deposition and its contribution of the regional atmospheric transport to mercury pollution at a national forest nature reserve, southwest China. Environmental Science and Pollution Research, 2015, 22, 20007-20018.	5.3	31
32	Inorganic sulfur and mercury speciation in the water level fluctuation zone of the Three Gorges Reservoir, China: The role of inorganic reduced sulfur on mercury methylation. Environmental Pollution, 2018, 237, 1112-1123.	7.5	31
33	Photo-degradation of monomethylmercury in the presence of chloride ion. Chemosphere, 2013, 91, 1471-1476.	8.2	30
34	Binding strength of mercury (II) to different dissolved organic matter: The roles of DOM properties and sources. Science of the Total Environment, 2022, 807, 150979.	8.0	30
35	Methylmercury production in soil in the water-level-fluctuating zone of the Three Gorges Reservoir, China: The key role of low-molecular-weight organic acids. Environmental Pollution, 2018, 235, 186-196.	7.5	28
36	Biotically mediated mercury methylation in the soils and sediments of Nam Co Lake, Tibetan Plateau. Environmental Pollution, 2017, 227, 243-251.	7.5	26

#	Article	IF	CITATIONS
37	Understanding heavy metal accumulation in roadside soils along major roads in the Tibet Plateau. Science of the Total Environment, 2022, 802, 149865.	8.0	26
38	Moss facilitating mercury, lead and cadmium enhanced accumulation in organic soils over glacial erratic at Mt. Gongga, China. Environmental Pollution, 2019, 254, 112974.	7.5	25
39	The concentrations and characteristics of dissolved organic matter in high-latitude lakes determine its ambient reducing capacity. Water Research, 2020, 169, 115217.	11.3	25
40	Four-year record of mercury wet deposition in one typical industrial city in southwest China. Atmospheric Environment, 2016, 142, 442-451.	4.1	23
41	Mercury bioaccumulation in fish in an artificial lake used to carry out cage culture. Journal of Environmental Sciences, 2019, 78, 352-359.	6.1	22
42	Wet deposition flux and runoff output flux of mercury in a typical small agricultural watershed in Three Gorges Reservoir areas. Environmental Science and Pollution Research, 2015, 22, 5538-5551.	5.3	21
43	A Review of Studies on the Biogeochemical Behaviors of Mercury in the Three Gorges Reservoir, China. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 686-694.	2.7	21
44	Anaerobic and aerobic biodegradation of soil-extracted dissolved organic matter from the water-level-fluctuation zone of the Three Gorges Reservoir region, China. Science of the Total Environment, 2021, 764, 142857.	8.0	20
45	Study of inhibition mechanism of on photoreduction of Hg(II) in artificial water. Chemosphere, 2012, 87, 171-176.	8.2	19
46	Dynamics of total culturable bacteria and its relationship with methylmercury in the soils of the water level fluctuation zone of the Three Gorges Reservoir. Science Bulletin, 2014, 59, 2966-2972.	1.7	19
47	Production and migration of methylmercury in water-level-fluctuating zone of the Three Gorges Reservoir, China: Dual roles of flooding-tolerant perennial herb. Journal of Hazardous Materials, 2020, 381, 120962.	12.4	19
48	Effects of mercury stress on methylmercury production in rice rhizosphere, methylmercury uptake in rice and physiological changes of leaves. Science of the Total Environment, 2021, 765, 142682.	8.0	19
49	Assessment of Soil Erosion Dynamics Using the GIS-Based RUSLE Model: A Case Study of Wangjiagou Watershed from the Three Gorges Reservoir Region, Southwestern China. Water (Switzerland), 2018, 10, 1817.	2.7	18
50	Impact of aquaculture on eutrophication in Changshou Reservoir. Diqiu Huaxue, 2006, 25, 90-96.	0.5	16
51	The fate of mercury and its relationship with carbon, nitrogen and bacterial communities during litter decomposing in two subtropical forests. Applied Geochemistry, 2017, 86, 26-35.	3.0	15
52	Mercury methylation in the soils and sediments of Three Gorges Reservoir Region. Journal of Soils and Sediments, 2018, 18, 1100-1109.	3.0	15
53	The efficiencies of inorganic mercury bio-methylation by aerobic bacteria under different oxygen concentrations. Ecotoxicology and Environmental Safety, 2021, 207, 111538.	6.0	15
54	Total mercury and methylmercury in human hair and food: Implications for the exposure and health risk to residents in the Three Gorges Reservoir Region, China. Environmental Pollution, 2021, 282, 117041.	7.5	14

#	Article	IF	CITATIONS
55	Effect of different rotation systems on mercury methylation in paddy fields. Ecotoxicology and Environmental Safety, 2019, 182, 109403.	6.0	12
56	A New Perspective is Required to Understand the Role of Forest Ecosystems in Global Mercury Cycle: A Review. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 650-656.	2.7	12
57	Protein and lipid growth rates regulate bioaccumulation of PCBs and Hg in Bighead Carp (Hypophthalmichthys nobilis) and Silver Carp (Hypophthalmichthys molitrix) from the Three Gorges Reservoir, China. Environmental Pollution, 2018, 243, 152-162.	7.5	11
58	Mercury transport, transformation and mass balance on a perspective of hydrological processes in a subtropical forest of China. Environmental Pollution, 2019, 254, 113065.	7.5	11
59	Biochar affects methylmercury production and bioaccumulation in paddy soils: Insights from soil-derived dissolved organic matter. Journal of Environmental Sciences, 2022, 119, 68-77.	6.1	11
60	Mercury release flux and its influencing factors at the air-water interface in paddy field in Chongqing, China. Science Bulletin, 2013, 58, 266-274.	1.7	10
61	Forest runoff increase mercury output from subtropical forest catchments: an example from an alpine reservoir in a national nature reserve (southwestern China). Environmental Science and Pollution Research, 2015, 22, 2745-2756.	5.3	10
62	A Two-Year Study on Mercury Fluxes from the Soil under Different Vegetation Cover in a Subtropical Region, South China. Atmosphere, 2018, 9, 30.	2.3	10
63	Linking the electron donation capacity to the molecular composition of soil dissolved organic matter from the Three Gorges Reservoir areas, China. Journal of Environmental Sciences, 2020, 90, 146-156.	6.1	10
64	Latitudinal gradient for mercury accumulation and isotopic evidence for post-depositional processes among three tropical forests in Southwest China. Journal of Hazardous Materials, 2022, 429, 128295.	12.4	10
65	Occurrence of methylmercury in aerobic environments: Evidence of mercury bacterial methylation based on simulation experiments. Journal of Hazardous Materials, 2022, 438, 129560.	12.4	10
66	Effect of dissolved organic matter on mercury release from water body. Journal of Environmental Sciences, 2011, 23, 912-917.	6.1	9
67	Photodegradation of methylmercury in Jialing River of Chongqing, China. Journal of Environmental Sciences, 2015, 32, 8-14.	6.1	9
68	The Draft Genome Sequence of Pseudomonas putida Strain TGRB4, an Aerobic Bacterium Capable of Producing Methylmercury. Current Microbiology, 2020, 77, 522-527.	2.2	9
69	Mercury in human hair and its implications for health investigation. Current Opinion in Environmental Science and Health, 2021, 22, 100271.	4.1	9
70	Estimation of the biogeochemical reactivities of dissolved organic matter from modified biochars using color. Science of the Total Environment, 2021, 790, 147974.	8.0	9
71	The Bioaccumulation and Biodegradation of Testosterone by Chlorella vulgaris. International Journal of Environmental Research and Public Health, 2019, 16, 1253.	2.6	8
72	Evaluation of Hg methylation in the water-level-fluctuation zone of the Three Gorges Reservoir region by using the MeHg/HgT ratio. Ecotoxicology and Environmental Safety, 2020, 195, 110468.	6.0	8

#	Article	IF	CITATIONS
73	Bacteria and archaea involved in anaerobic mercury methylation and methane oxidation in anaerobic sulfate–rich reactors. Chemosphere, 2021, 274, 129773.	8.2	8
74	Use smaller size of straw to alleviate mercury methylation and accumulation induced by straw incorporation in paddy field. Journal of Hazardous Materials, 2022, 423, 127002.	12.4	8
75	Role of the rhizosphere of a flooding-tolerant herb in promoting mercury methylation in water-level fluctuation zones. Journal of Environmental Sciences, 2022, 119, 139-151.	6.1	8
76	Roles of chloride ion in photo-reduction/oxidation of mercury. Science Bulletin, 2014, 59, 3390-3397.	1.7	7
77	A simulation study of mercury release fluxes from soils in wet–dry rotation environment. Journal of Environmental Sciences, 2014, 26, 1445-1452.	6.1	7
78	Significant bioaccumulation and biotransformation of methyl mercury by organisms in rice paddy ecosystems: A potential health risk to humans. Environmental Pollution, 2021, 273, 116431.	7.5	7
79	Distribution of mercury and methylmercury in river water and sediment of typical manganese mining area. Journal of Environmental Sciences, 2022, 119, 11-22.	6.1	7
80	Photodegradation of methylmercury in the water body of the Three Gorges Reservoir. Science China Chemistry, 2015, 58, 1073-1081.	8.2	6
81	Refining mercury emission estimations to the atmosphere from iron and steel production. Journal of Environmental Sciences, 2016, 43, 1-3.	6.1	6
82	The effect of different TiO2 nanoparticles on the release and transformation of mercury in sediment. Journal of Soils and Sediments, 2017, 17, 536-542.	3.0	6
83	Rice-paddy field acts as a buffer system to decrease the terrestrial characteristics of dissolved organic matter exported from a typical small agricultural watershed in the Three Gorges Reservoir Area, China. Environmental Science and Pollution Research, 2019, 26, 23873-23885.	5.3	6
84	Increase of litterfall mercury input and sequestration during decomposition with a montane elevation in Southwest China. Environmental Pollution, 2022, 292, 118449.	7.5	6
85	Diurnal characteristics of migration and transformation of mercury and effects of nitrate in Jialing River, Chongqing, China. Chemosphere, 2015, 119, 634-641.	8.2	5
86	Methyl and Total Mercury in Different Media and Associated Fluxes in a Watershed Forest, Southwest China. International Journal of Environmental Research and Public Health, 2018, 15, 2618.	2.6	5
87	Understanding the effects of long-term different fertilizer applications on methylmercury accumulation in rice (Oryza sativa L.) plants. Science of the Total Environment, 2021, 777, 146125.	8.0	5
88	A Study on Hair Mercury Levels of University Students. Bulletin of Environmental Contamination and Toxicology, 2021, 106, 160-164.	2.7	4
89	Exposure of the residents around the Three Gorges Reservoir, China to chromium, lead and arsenic and their health risk via food consumption. Ecotoxicology and Environmental Safety, 2021, 228, 112997.	6.0	4
90	Mercury accumulation and dynamics in montane forests along an elevation gradient in Southwest China. Journal of Environmental Sciences, 2022, 119, 1-10.	6.1	4

#	Article	IF	CITATIONS
91	Bacterial and archaeal compositions and influencing factors in soils under different submergence time in a mercury-sensitive reservoir. Ecotoxicology and Environmental Safety, 2020, 191, 110155.	6.0	3
92	Migration characteristics and potential determinants of mercury in long-term decomposing litterfall of two subtropical forests. Ecotoxicology and Environmental Safety, 2021, 208, 111402.	6.0	3
93	Potential Ecological Risk of Heavy Metals in a Typical Tributary of the Three Gorges Reservoir. Bulletin of Environmental Contamination and Toxicology, 2021, 106, 18-23.	2.7	3
94	Study on Mercury Adsorption and Desorption on Different Modified Biochars. Bulletin of Environmental Contamination and Toxicology, 2022, 108, 629-634.	2.7	1
95	Transport Dynamics of Mercury in Rainfall-runoff After Summer Drought in a Small Agricultural Watershed in the Three Gorges Reservoir Region. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 679-685.	2.7	0