Steven A Kliewer

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/77351/steven-a-kliewer-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

54	13,812	39	56
papers	citations	h-index	g-index
56	15,436 ext. citations	17.8	6.04
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
54	Characterization of the endogenous DAF-12 ligand and its use as an anthelmintic agent in. <i>ELife</i> , 2021 , 10,	8.9	2
53	FGF21 promotes thermogenic gene expression as an autocrine factor in adipocytes. <i>Cell Reports</i> , 2021 , 35, 109331	10.6	12
52	Identification of a nuclear receptor/coactivator developmental signaling pathway in the nematode parasite. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	2
51	The Schistosoma mansoni Inuclear receptor FTZ-F1 maintains esophageal gland function via transcriptional regulation of Imeg-8.3 <i>PLoS Pathogens</i> , 2021 , 17, e1010140	7.6	0
50	Pancreatitis is an FGF21-deficient state that is corrected by replacement therapy. <i>Science Translational Medicine</i> , 2020 , 12,	17.5	16
49	Dafachronic acid and temperature regulate canonical dauer pathways during Nippostrongylus brasiliensis infectious larvae activation. <i>Parasites and Vectors</i> , 2020 , 13, 162	4	6
48	A Dozen Years of Discovery: Insights into the Physiology and Pharmacology of FGF21. <i>Cell Metabolism</i> , 2019 , 29, 246-253	24.6	96
47	The orphan nuclear receptor SHP regulates ER stress response by inhibiting XBP1s degradation. <i>Genes and Development</i> , 2019 , 33, 1083-1094	12.6	10
46	The Hormone FGF21 Stimulates Water Drinking in Response to Ketogenic Diet and Alcohol. <i>Cell Metabolism</i> , 2018 , 27, 1338-1347.e4	24.6	50
45	Methylprednisolone acetate induces, and 🛽-dafachronic acid suppresses, hyperinfection in NSG mice. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 204-20	9 ^{11.5}	27
44	PPAREK107 SUMOylation regulates insulin sensitivity but not adiposity in mice. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 12102-12111	11.5	14
43	FGF21 Is an Exocrine Pancreas Secretagogue. <i>Cell Metabolism</i> , 2017 , 25, 472-480	24.6	58
42	Nuclear receptors: emerging drug targets for parasitic diseases. <i>Journal of Clinical Investigation</i> , 2017 , 127, 1165-1171	15.9	13
41	FGF19, FGF21, and an FGFR1/EKlotho-Activating Antibody Act on the Nervous System to Regulate Body Weight and Glycemia. <i>Cell Metabolism</i> , 2017 , 26, 709-718.e3	24.6	131
40	KLB is associated with alcohol drinking, and its gene product EKlotho is necessary for FGF21 regulation of alcohol preference. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 14372-14377	11.5	150
39	Impaired 17,20-Lyase Activity in Male Mice Lacking Cytochrome b5 in Leydig Cells. <i>Molecular Endocrinology</i> , 2016 , 30, 469-78		11
38	Prolongevity hormone FGF21 protects against immune senescence by delaying age-related thymic involution. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113. 1026-31	11.5	67

37	FGF21 Regulates Sweet and Alcohol Preference. Cell Metabolism, 2016, 23, 344-9	24.6	189
36	Regulation of Life Cycle Checkpoints and Developmental Activation of Infective Larvae in Strongyloides stercoralis by Dafachronic Acid. <i>PLoS Pathogens</i> , 2016 , 12, e1005358	7.6	41
35	The nuclear receptor DAF-12 regulates nutrient metabolism and reproductive growth in nematodes. <i>PLoS Genetics</i> , 2015 , 11, e1005027	6	33
34	Tissue-specific actions of the metabolic hormones FGF15/19 and FGF21. <i>Trends in Endocrinology and Metabolism</i> , 2015 , 26, 22-9	8.8	194
33	Bile Acids as Hormones: The FXR-FGF15/19 Pathway. <i>Digestive Diseases</i> , 2015 , 33, 327-31	3.2	219
32	Detection of FGF15 in plasma by stable isotope standards and capture by anti-peptide antibodies and targeted mass spectrometry. <i>Cell Metabolism</i> , 2015 , 21, 898-904	24.6	47
31	Glucocorticoids regulate the metabolic hormone FGF21 in a feed-forward loop. <i>Molecular Endocrinology</i> , 2015 , 29, 213-23		57
30	Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. <i>Diabetes</i> , 2014 , 63, 4057-63	0.9	349
29	FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. <i>Cell Metabolism</i> , 2014 , 20, 670-7	24.6	305
28	SnapShot: Hormones of the gastrointestinal tract. <i>Cell</i> , 2014 , 159, 1478.e1	56.2	8
28	SnapShot: Hormones of the gastrointestinal tract. <i>Cell</i> , 2014 , 159, 1478.e1 FGF21 contributes to neuroendocrine control of female reproduction. <i>Nature Medicine</i> , 2013 , 19, 1153-		155
			155
27	FGF21 contributes to neuroendocrine control of female reproduction. <i>Nature Medicine</i> , 2013 , 19, 1153-FGF21 regulates metabolism and circadian behavior by acting on the nervous system. <i>Nature</i>	.6 50.5	155
27 26	FGF21 contributes to neuroendocrine control of female reproduction. <i>Nature Medicine</i> , 2013 , 19, 1153- FGF21 regulates metabolism and circadian behavior by acting on the nervous system. <i>Nature Medicine</i> , 2013 , 19, 1147-52 Fibroblast growth factor-21 regulates PPARIactivity and the antidiabetic actions of	50.5 50.5	155 333
27 26 25	FGF21 contributes to neuroendocrine control of female reproduction. <i>Nature Medicine</i> , 2013 , 19, 1153-FGF21 regulates metabolism and circadian behavior by acting on the nervous system. <i>Nature Medicine</i> , 2013 , 19, 1147-52 Fibroblast growth factor-21 regulates PPARIactivity and the antidiabetic actions of thiazolidinediones. <i>Cell</i> , 2012 , 148, 556-67 Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor [] <i>Proceedings of the National Academy of Sciences of the United</i>	650.5 50.5 56.2	155 333 419
27262524	FGF21 contributes to neuroendocrine control of female reproduction. <i>Nature Medicine</i> , 2013 , 19, 1153-FGF21 regulates metabolism and circadian behavior by acting on the nervous system. <i>Nature Medicine</i> , 2013 , 19, 1147-52 Fibroblast growth factor-21 regulates PPARD and the antidiabetic actions of thiazolidinediones. <i>Cell</i> , 2012 , 148, 556-67 Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor [] <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 3143-8	650.5 50.5 56.2	155 333 419 291
2726252423	FGF21 contributes to neuroendocrine control of female reproduction. <i>Nature Medicine</i> , 2013 , 19, 1153-FGF21 regulates metabolism and circadian behavior by acting on the nervous system. <i>Nature Medicine</i> , 2013 , 19, 1147-52 Fibroblast growth factor-21 regulates PPARIactivity and the antidiabetic actions of thiazolidinediones. <i>Cell</i> , 2012 , 148, 556-67 Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor Il <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 3143-8 The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. <i>ELife</i> , 2012 , 1, e00065 Klotho is required for fibroblast growth factor 21 effects on growth and metabolism. <i>Cell</i>	650.5 50.5 56.2 11.5	155 333 419 291 265

19	Liver LXRI expression is crucial for whole body cholesterol homeostasis and reverse cholesterol transport in mice. <i>Journal of Clinical Investigation</i> , 2012 , 122, 1688-99	15.9	138
18	FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. <i>Science</i> , 2011 , 331, 1621-4	33.3	421
17	FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1[pathway. <i>Cell Metabolism</i> , 2011 , 13, 729-38	24.6	263
16	LRH-1 and PTF1-L coregulate an exocrine pancreas-specific transcriptional network for digestive function. <i>Genes and Development</i> , 2011 , 25, 1674-9	12.6	78
15	Regulation of bile acid synthesis by fat-soluble vitamins A and D. <i>Journal of Biological Chemistry</i> , 2010 , 285, 14486-94	5.4	150
14	Research resource: Comprehensive expression atlas of the fibroblast growth factor system in adult mouse. <i>Molecular Endocrinology</i> , 2010 , 24, 2050-64		470
13	Identification of the nuclear receptor DAF-12 as a therapeutic target in parasitic nematodes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 9138-43	11.5	99
12	FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 10853-8	11.5	503
11	Inhibition of growth hormone signaling by the fasting-induced hormone FGF21. <i>Cell Metabolism</i> , 2008 , 8, 77-83	24.6	316
10	Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. <i>Molecular and Cellular Biology</i> , 2007 , 27, 3417-28	4.8	397
9	Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. <i>Journal of Biological Chemistry</i> , 2007 , 282, 26687-26	669 5	542
8	Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. <i>Cell Metabolism</i> , 2007 , 5, 415-25	24.6	1103
7	Identification of a hormonal basis for gallbladder filling. <i>Nature Medicine</i> , 2006 , 12, 1253-5	50.5	231
6	Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. <i>Cell Metabolism</i> , 2005 , 2, 217-25	24.6	1270
5	Pregnane X receptor: predicting and preventing drug interactions. <i>Thrombosis Research</i> , 2005 , 117, 133-6; discussion 145-51	8.2	6
4	Cholesterol detoxification by the nuclear pregnane X receptor. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 2675-6	11.5	18
3	Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. <i>Genes and Development</i> , 2003 , 17, 1581-91	12.6	516
2	A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. <i>Molecular Cell</i> , 2000 , 6, 517-26	17.6	1457

Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. *Nature*, **1992**, 358, 771-4

50.4 1571