Florian Leuschner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7735045/publications.pdf

Version: 2024-02-01

48 papers

4,249 citations

236925 25 h-index 254184 43 g-index

49 all docs 49 docs citations

times ranked

49

6535 citing authors

#	Article	IF	CITATIONS
1	CCL17 Aggravates Myocardial Injury by Suppressing Recruitment of Regulatory T Cells. Circulation, 2022, 145, 765-782.	1.6	42
2	Towards standardization of echocardiography for the evaluation of left ventricular function in adult rodents: a position paper of the ESC Working Group on Myocardial Function. Cardiovascular Research, 2021, 117, 43-59.	3.8	72
3	The diagnostic benefit of 16S rDNA PCR examination of infective endocarditis heart valves: a cohort study of 146 surgical cases confirmed by histopathology. Clinical Research in Cardiology, 2021, 110, 332-342.	3.3	11
4	Machine learning-based risk prediction of intrahospital clinical outcomes in patients undergoing TAVI. Clinical Research in Cardiology, 2021, 110, 343-356.	3.3	16
5	Targeted PET Imaging of Chemokine Receptor 2–Positive Monocytes and Macrophages in the Injured Heart. Journal of Nuclear Medicine, 2021, 62, 111-114.	5.0	31
6	Integrating clonal haematopoiesis into geriatric oncology: The ARCH between aging, cardiovascular disease and malignancy. Journal of Geriatric Oncology, 2021, 12, 479-482.	1.0	2
7	Early Detection of Checkpoint Inhibitor-Associated Myocarditis Using 68Ga-FAPI PET/CT. Frontiers in Cardiovascular Medicine, 2021, 8, 614997.	2.4	55
8	Consensus Transcriptional Landscape of Human Endâ€Stage Heart Failure. Journal of the American Heart Association, 2021, 10, e019667.	3.7	36
9	SARS-CoV-2 Infects Human EngineeredÂHeart Tissues and Models COVID-19 Myocarditis. JACC Basic To Translational Science, 2021, 6, 331-345.	4.1	121
10	Comparative Transcriptomics of Immune Checkpoint Inhibitor Myocarditis Identifies Guanylate Binding Protein 5 and 6 Dysregulation. Cancers, 2021, 13, 2498.	3.7	23
11	Are Sutureless and Rapid-Deployment Aortic Valves a Serious Alternative to TA-TAVI? A Matched-Pairs Analysis. Journal of Clinical Medicine, 2021, 10, 3072.	2.4	5
12	Basophils balance healing after myocardial infarction via IL-4/IL-13. Journal of Clinical Investigation, 2021, 131, .	8.2	42
13	Feasibility of Coronary Access in Patients With Acute Coronary Syndrome and Previous TAVR. JACC: Cardiovascular Interventions, 2021, 14, 1578-1590.	2.9	18
14	Novel functions of macrophages in the heart: insights into electrical conduction, stress, and diastolic dysfunction. European Heart Journal, 2020, 41, 989-994.	2.2	26
15	Reactive Oxidative Species–Modulated Ca2+ Release Regulates β2 Integrin Activation on CD4+ CD28null T Cells of Acute Coronary Syndrome Patients. Journal of Immunology, 2020, 205, 2276-2286.	0.8	3
16	A Minimal-Invasive Approach for Standardized Induction of Myocardial Infarction in Mice. Circulation Research, 2020, 127, 1214-1216.	4.5	6
17	Relationship Between Cardiac Fibroblast Activation Protein Activity by Positron Emission Tomography and Cardiovascular Disease. Circulation: Cardiovascular Imaging, 2020, 13, e010628.	2.6	92
18	Cardiac Regeneration and Tumor Growthâ€"What Do They Have in Common?. Frontiers in Genetics, 2020, 11, 586658.	2.3	2

#	Article	IF	Citations
19	Secretome Analysis of Cardiomyocytes Identifies PCSK6 (Proprotein Convertase Subtilisin/Kexin Type 6) as a Novel Player in Cardiac Remodeling After Myocardial Infarction. Circulation, 2020, 141, 1628-1644.	1.6	50
20	Molecular Imaging Visualizes Recruitment of Inflammatory Monocytes and Macrophages to the Injured Heart. Circulation Research, 2019, 124, 881-890.	4.5	94
21	15-Deoxy-Δ12,14-Prostaglandin J ₂ Reinforces the Anti-Inflammatory Capacity of Endothelial Cells With a Genetically Determined NO Deficit. Circulation Research, 2019, 125, 282-294.	4.5	8
22	Transfemoral aortic valve replacement for severe aortic valve regurgitation in a patient with a pulsatileâ€flow biventricular assist device. ESC Heart Failure, 2019, 6, 217-221.	3.1	3
23	Delineating the Dynamic Transcriptome Response of mRNA and microRNA during Zebrafish Heart Regeneration. Biomolecules, 2019, 9, 11.	4.0	21
24	Periprocedural antibiotic treatment in transvascular aortic valve replacement. Journal of Interventional Cardiology, 2018, 31, 885-890.	1.2	5
25	A CHIP mutation to battle cancer: potential or hazard for cardiovascular disease?. Cardiovascular Research, 2018, 114, e96-e98.	3.8	0
26	Silencing the CSF-1 Axis Using Nanoparticle Encapsulated siRNA Mitigates Viral and Autoimmune Myocarditis. Frontiers in Immunology, 2018, 9, 2303.	4.8	26
27	The role of Wnt signaling in the healing myocardium: a focus on cell specificity. Basic Research in Cardiology, 2018, 113, 44.	5.9	44
28	Improvements of Procedural Results With a Newâ€Generation Selfâ€Expanding Transfemoral Aortic Valve Prosthesis in Comparison to the Oldâ€Generation Device. Journal of Interventional Cardiology, 2017, 30, 72-78.	1.2	48
29	My Transition From a Postdoctoral Fellowship in the United States to Junior Faculty in Europe. Circulation Research, 2017, 121, 206-207.	4.5	0
30	The cardiac microenvironment uses nonâ€canonical <scp>WNT</scp> signaling to activate monocytes after myocardial infarction. EMBO Molecular Medicine, 2017, 9, 1279-1293.	6.9	55
31	Short and long-term results after endovascular management of vascular complications during transfemoral aortic valve implantation. Acta Cardiologica, 2017, 72, 474-482.	0.9	5
32	Therapeutic hypothermia impacts leukocyte kinetics after cardiac arrest. Cardiovascular Diagnosis and Therapy, 2016, 6, 199-207.	1.7	8
33	Macrophages retain hematopoietic stem cells in the spleen via VCAM-1. Journal of Experimental Medicine, 2015, 212, 497-512.	8.5	143
34	Silencing of CCR2 in myocarditis. European Heart Journal, 2015, 36, 1478-1488.	2.2	101
35	Ca <scp>M</scp> Kinase <scp>II</scp> mediates maladaptive postâ€infarct remodeling and proâ€inflammatory chemoattractant signaling but not acute myocardial ischemia/reperfusion injury. EMBO Molecular Medicine, 2014, 6, 1231-1245.	6.9	94
36	Endoscopic Time-Lapse Imaging of Immune Cells in Infarcted Mouse Hearts. Circulation Research, 2013, 112, 891-899.	4.5	161

#	Article	IF	Citations
37	Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. Journal of Experimental Medicine, 2012, 209, 123-137.	8.5	435
38	Myocardial infarction accelerates atherosclerosis. Nature, 2012, 487, 325-329.	27.8	874
39	Therapeutic siRNA silencing in inflammatory monocytes in mice. Nature Biotechnology, 2011, 29, 1005-1010.	17.5	697
40	Molecular Imaging of Coronary Atherosclerosis and Myocardial Infarction. Circulation Research, 2011, 108, 593-606.	4.5	98
41	Angiotensin-Converting Enzyme Inhibition Prevents the Release of Monocytes From Their Splenic Reservoir in Mice With Myocardial Infarction. Circulation Research, 2010, 107, 1364-1373.	4.5	198
42	Autoimmune myocarditis: Past, present and future. Journal of Autoimmunity, 2009, 33, 282-289.	6.5	75
43	Absence of auto-antibodies against cardiac troponin I predicts improvement of left ventricular function after acute myocardial infarction. European Heart Journal, 2008, 29, 1949-1955.	2.2	96
44	Identification of Cardiac Troponin I Sequence Motifs Leading to Heart Failure by Induction of Myocardial Inflammation and Fibrosis. Circulation, 2008, 118, 2063-2072.	1.6	97
45	Absence of Autoâ€Antibodies against Cardiac Troponin I Predicts Improvement of Left Ventricular Function after Acute Myocardial Infarction. FASEB Journal, 2008, 22, 668.28.	0.5	0
46	Autoantibodies against Cardiac Troponin I in Patients with Dilated Cardioâ€myopathy Predict Improvement of Cardiac Function by Immunoadsorption. FASEB Journal, 2008, 22, 668.29.	0.5	0
47	Response to Letter Regarding Article, "Cardiac Troponin I but Not Cardiac Troponin T Induces Severe Autoimmune Inflammation in the Myocardium― Circulation, 2007, 115, .	1.6	0
48	Cardiac Troponin I but Not Cardiac Troponin T Induces Severe Autoimmune Inflammation in the Myocardium. Circulation, 2006, 114, 1693-1702.	1.6	210