
Ali Ferjani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7734964/publications.pdf Version: 2024-02-01

Διι Εεριανί

#	Article	IF	CITATIONS
1	Looking beyond the gene network – metabolic and mechanical cell drivers of leaf morphogenesis. Journal of Cell Science, 2022, 135, .	2.0	22
2	What is quantitative plant biology?. Quantitative Plant Biology, 2021, 2, .	2.0	43
3	Stem integrity in <i>Arabidopsis thaliana</i> requires a load-bearing epidermis. Development (Cambridge), 2021, 148, .	2.5	9
4	A Method Enabling Comprehensive Isolation of Arabidopsis Mutants Exhibiting Unusual Root Mechanical Behavior. Frontiers in Plant Science, 2021, 12, 646404.	3.6	6
5	Multiple functions of the vacuole in plant growth and fruit quality. Molecular Horticulture, 2021, 1, .	5.8	9
6	An auxin signaling network translates low-sugar-state input into compensated cell enlargement in the fugu5 cotyledon. PLoS Genetics, 2021, 17, e1009674.	3.5	29
7	Two tonoplast proton pumps function in Arabidopsis embryo development. New Phytologist, 2020, 225, 1606-1617.	7.3	14
8	Molecular Basis for Natural Vegetative Propagation via Regeneration in North American Lake Cress, Rorippa aquatica (Brassicaceae). Plant and Cell Physiology, 2020, 61, 353-369.	3.1	11
9	Lack of Vacuolar H+ -Pyrophosphatase and Cytosolic Pyrophosphatases Causes Fatal Developmental Defects in Arabidopsis thaliana. Frontiers in Plant Science, 2020, 11, 655.	3.6	2
10	Excess Pyrophosphate Restrains Pavement Cell Morphogenesis and Alters Organ Flatness in Arabidopsis thaliana. Frontiers in Plant Science, 2020, 11, 31.	3.6	10
11	Excess Pyrophosphate within Guard Cells Delays Stomatal Closure. Plant and Cell Physiology, 2019, 60, 875-887.	3.1	14
12	The Phosphate Fast-Responsive Genes <i>PECP1</i> and <i>PPsPase1</i> Affect Phosphocholine and Phosphoethanolamine Content. Plant Physiology, 2018, 176, 2943-2962.	4.8	22
13	Vacuolar H ⁺ -Pyrophosphatase and Cytosolic Soluble Pyrophosphatases Cooperatively Regulate Pyrophosphate Levels in <i>Arabidopsis thaliana</i> . Plant Cell, 2018, 30, 1040-1061.	6.6	44
14	Vacuolar Proton Pyrophosphatase Is Required for High Magnesium Tolerance in Arabidopsis. International Journal of Molecular Sciences, 2018, 19, 3617.	4.1	15
15	Pyrophosphate inhibits gluconeogenesis by restricting UDP-glucose formation in vivo. Scientific Reports, 2018, 8, 14696.	3.3	46
16	High Vâ€PPase activity is beneficial under high salt loads, but detrimental without salinity. New Phytologist, 2018, 219, 1421-1432.	7.3	37
17	SRPP, a cell-wall protein is involved in development and protection of seeds and root hairs in Arabidopsis thaliana. Plant and Cell Physiology, 2017, 58, pcx008.	3.1	10
18	Compensated Cell Enlargement in fugu5 is Specifically Triggered by Lowered Sucrose Production from Seed Storage Lipids. Plant and Cell Physiology, 2017, 58, 668-678.	3.1	39

Ali Ferjani

#	Article	IF	CITATIONS
19	Suppressor Screen and Phenotype Analyses Revealed an Emerging Role of the Monofunctional Peroxisomal Enoyl-CoA Hydratase 2 in Compensated Cell Enlargement. Frontiers in Plant Science, 2016, 7, 132.	3.6	41
20	Contribution of PPi-Hydrolyzing Function of Vacuolar H+-Pyrophosphatase in Vegetative Growth of Arabidopsis: Evidenced by Expression of Uncoupling Mutated Enzymes. Frontiers in Plant Science, 2016, 7, 415.	3.6	38
21	Lack of H+-pyrophosphatase Prompts Developmental Damage in Arabidopsis Leaves on Ammonia-Free Culture Medium. Frontiers in Plant Science, 2016, 7, 819.	3.6	28
22	Editorial: Multiple Facets of H+-Pyrophosphatase and Related Enzymes. Frontiers in Plant Science, 2016, 7, 1265.	3.6	11
23	Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nature Genetics, 2016, 48, 1233-1241.	21.4	438
24	Balanced cell proliferation and expansion is essential for flowering stem growth control. Plant Signaling and Behavior, 2015, 10, e992755.	2.4	4
25	A Decrease in Ambient Temperature Induces Post-Mitotic Enlargement of Palisade Cells in North American Lake Cress. PLoS ONE, 2015, 10, e0141247.	2.5	8
26	The Conflict Between Cell Proliferation and Expansion Primarily Affects Stem Organogenesis in Arabidopsis. Plant and Cell Physiology, 2014, 55, 1994-2007.	3.1	31
27	Regulation of PPi Levels Through the Vacuolar Membrane H+-Pyrophosphatase. Progress in Botany Fortschritte Der Botanik, 2014, , 145-165.	0.3	25
28	Roles of the vacuolar H ⁺ -PPase in seed storage oil mobilization and plant development. Plant Morphology, 2014, 26, 45-51.	0.1	6
29	Enhanced Cell Expansion in a KRP2 Overexpressor is Mediated by Increased V-ATPase Activity. Plant and Cell Physiology, 2013, 54, 1989-1998.	3.1	30
30	Peptide Separation Methodologies for In-Depth Proteomics in Arabidopsis. Plant and Cell Physiology, 2013, 54, 808-815.	3.1	26
31	Class III compensation, represented byKRP2overexpression, depends on V-ATPase activity in proliferative cells. Plant Signaling and Behavior, 2013, 8, e27204.	2.4	14
32	The ATM <i>-</i> Dependent DNA Damage Response Acts as an Upstream Trigger for Compensation in the <i>fas1</i> Mutation during Arabidopsis Leaf Development Â. Plant Physiology, 2013, 162, 831-841.	4.8	38
33	Regulation of pyrophosphate levels by H ⁺ -PPase is central for proper resumption of early plant development. Plant Signaling and Behavior, 2012, 7, 38-42.	2.4	26
34	iTRAQ Analysis Reveals Mechanisms of Growth Defects Due to Excess Zinc in Arabidopsis Â. Plant Physiology, 2011, 155, 1893-1907.	4.8	167
35	V-ATPase dysfunction under excess zinc inhibits Arabidopsis cell expansion. Plant Signaling and Behavior, 2011, 6, 1253-1255.	2.4	19
36	Keep an Eye on PPi: The Vacuolar-Type H+-Pyrophosphatase Regulates Postgerminative Development in <i>Arabidopsis</i> Â Â Â. Plant Cell, 2011, 23, 2895-2908.	6.6	178

Ali Ferjani

#	Article	IF	CITATIONS
37	Organ size control in Arabidopsis: Insights from compensation studies. Plant Morphology, 2010, 22, 65-71.	0.1	14
38	Identification of Zinc-Responsive Proteins in the Roots of Arabidopsis thaliana Using a Highly Improved Method of Two-Dimensional Electrophoresis. Plant and Cell Physiology, 2009, 50, 2234-2239.	3.1	43
39	Control of Leaf Morphogenesis by Long- and Short-Distance Signaling: Differentiation of Leaves Into Sun or Shade Types and Compensated Cell Enlargement. , 2008, , 47-62.		22
40	Analysis of Leaf Development in fugu Mutants of Arabidopsis Reveals Three Compensation Modes That Modulate Cell Expansion in Determinate Organs. Plant Physiology, 2007, 144, 988-999.	4.8	204
41	Large-scale histological analysis of leaf mutants using two simple leaf observation methods: identification of novel genetic pathways governing the size and shape of leaves. Plant Journal, 2006, 48, 638-644.	5.7	128
42	Coordination of cell proliferation and cell expansion in the control of leaf size in Arabidopsis thaliana. Journal of Plant Research, 2006, 119, 37-42.	2.4	229
43	The SphS-SphR Two Component System Is the Exclusive Sensor for the Induction of Gene Expression in Response to Phosphate Limitation in Synechocystis. Journal of Biological Chemistry, 2004, 279, 13234-13240.	3.4	159
44	Glucosylglycerol, a Compatible Solute, Sustains Cell Division under Salt Stress. Plant Physiology, 2003, 131, 1628-1637.	4.8	103
45	Characterization of the stromal protease(s) degrading the cross-linked products of the D1 protein generated by photoinhibition of photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 2001, 1503, 385-395.	1.0	14
46	Turnover of the aggregates and cross-linked products of the D1 protein generated by acceptor-side photoinhibition of photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 1999, 1413, 147-158.	1.0	45