
Martin Hartmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7734633/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ordered Mesoporous Materials for Bioadsorption and Biocatalysis. Chemistry of Materials, 2005, 17, 4577-4593.	3.2	1,082
2	Immobilization of enzymes on porous silicas – benefits and challenges. Chemical Society Reviews, 2013, 42, 6277.	18.7	522
3	Progress in enzyme immobilization in ordered mesoporous materials and related applications. Chemical Society Reviews, 2013, 42, 3894.	18.7	498
4	Hierarchical Zeolites: A Proven Strategy to Combine Shape Selectivity with Efficient Mass Transport. Angewandte Chemie - International Edition, 2004, 43, 5880-5882.	7.2	491
5	Transition-Metal Ions in Aluminophosphate and Silicoaluminophosphate Molecular Sieves:  Location, Interaction with Adsorbates and Catalytic Properties. Chemical Reviews, 1999, 99, 635-664.	23.0	473
6	Black TiO ₂ Nanotubes: Cocatalyst-Free Open-Circuit Hydrogen Generation. Nano Letters, 2014, 14, 3309-3313.	4.5	417
7	Alumination and Ion Exchange of Mesoporous SBA-15 Molecular Sieves. Chemistry of Materials, 1999, 11, 1621-1627.	3.2	393
8	Wastewater treatment with heterogeneous Fenton-type catalysts based on porous materials. Journal of Materials Chemistry, 2010, 20, 9002.	6.7	360
9	Catalytic test reactions for the evaluation of hierarchical zeolites. Chemical Society Reviews, 2016, 45, 3313-3330.	18.7	357
10	Adsorption of Lysozyme over Mesoporous Molecular Sieves MCM-41 and SBA-15:Â Influence of pH and Aluminum Incorporation. Journal of Physical Chemistry B, 2004, 108, 7323-7330.	1.2	330
11	Adsorption of Cytochrome c on Mesoporous Molecular Sieves:Â Influence of pH, Pore Diameter, and Aluminum Incorporation. Chemistry of Materials, 2004, 16, 3056-3065.	3.2	315
12	Ethene/Ethane and Propene/Propane Separation via the Olefin and Paraffin Selective Metal–Organic Framework Adsorbents CPO-27 and ZIF-8. Langmuir, 2013, 29, 8592-8600.	1.6	311
13	Adsorptive Separation of Isobutene and Isobutane on Cu ₃ (BTC) ₂ . Langmuir, 2008, 24, 8634-8642.	1.6	310
14	Biocatalysis with enzymes immobilized on mesoporous hosts: the status quo and future trends. Journal of Materials Chemistry, 2010, 20, 844-857.	6.7	310
15	Adsorption of Cytochrome C on New Mesoporous Carbon Molecular Sieves. Journal of Physical Chemistry B, 2003, 107, 8297-8299.	1.2	238
16	Adsorption of Vitamin E on Mesoporous Carbon Molecular Sieves. Chemistry of Materials, 2005, 17, 829-833.	3.2	220
17	Mechanical Stability and Porosity Analysis of Large-Pore SBA-15 Mesoporous Molecular Sieves by Mercury Porosimetry and Organics Adsorption. Langmuir, 2002, 18, 8010-8016.	1.6	218
18	An Optimized Procedure for the Synthesis of AlSBA-15 with Large Pore Diameter and High Aluminum Content. Journal of Physical Chemistry B, 2004, 108, 11496-11505.	1.2	215

#	Article	IF	CITATIONS
19	Amino-functionalized basic catalysts with MIL-101 structure. Microporous and Mesoporous Materials, 2012, 164, 38-43.	2.2	211
20	Improving the Hydrogenâ€Adsorption Properties of a Hydroxyâ€Modified MILâ€53(Al) Structural Analogue by Lithium Doping. Angewandte Chemie - International Edition, 2009, 48, 4639-4642.	7.2	202
21	"Black―TiO ₂ Nanotubes Formed by High-Energy Proton Implantation Show Noble-Metal- <i>co</i> -Catalyst Free Photocatalytic H ₂ -Evolution. Nano Letters, 2015, 15, 6815-6820.	4.5	174
22	Benzylation of benzene and other aromatics by benzyl chloride over mesoporous AlSBA-15 catalysts. Microporous and Mesoporous Materials, 2005, 80, 195-203.	2.2	153
23	Effects of varying water adsorption on a Cu3(BTC)2 metal–organic framework (MOF) as studied by 1H and 13C solid-state NMR spectroscopy. Physical Chemistry Chemical Physics, 2011, 13, 7783.	1.3	140
24	Direct Synthesis of Well-Ordered and Unusually Reactive FeSBA-15 Mesoporous Molecular Sieves. Chemistry of Materials, 2005, 17, 5339-5345.	3.2	138
25	Ethylene Dimerization and Butene Isomerization in Nickel-Containing MCM-41 and AlMCM-41 Mesoporous Molecular Sieves:Â An Electron Spin Resonance and Gas Chromatography Study. The Journal of Physical Chemistry, 1996, 100, 9906-9910.	2.9	126
26	Pore Size Engineering and Mechanical Stability of the Cubic Mesoporous Molecular Sieve SBA-1. Chemistry of Materials, 2003, 15, 1385-1393.	3.2	123
27	Adsorptive Separation of Olefin/Paraffin Mixtures with ZIF-4. Langmuir, 2015, 31, 12382-12389.	1.6	122
28	Mesoporous Organosilicas With Large Cage‣ike Pores for High Efficiency Immobilization of Enzymes. Advanced Materials, 2011, 23, 2627-2632.	11.1	116
29	Knoevenagel condensation over β and Y zeolites in liquid phase under solvent free conditions. Applied Catalysis A: General, 2006, 298, 8-15.	2.2	106
30	Recent Progress in Biocatalysis with Enzymes Immobilized on Mesoporous Hosts. Topics in Catalysis, 2012, 55, 1081-1100.	1.3	104
31	Characterization of copper and zinc containing MCM-41 and MCM-48 mesoporous molecular sieves by temperature programmed reduction and carbon monoxide adsorption. Microporous and Mesoporous Materials, 1999, 27, 309-320.	2.2	101
32	A novel family of solid basic catalysts obtained by nitridation of crystalline microporous aluminosilicates and aluminophosphates. Applied Catalysis A: General, 2000, 200, 117-123.	2.2	101
33	CW and Pulsed ESR Spectroscopy of Cupric Ions in the Metalâ^'Organic Framework Compound Cu ₃ (BTC) ₂ . Journal of Physical Chemistry C, 2008, 112, 2678-2684.	1.5	101
34	Hierarchically-structured porous materials: from basic understanding to applications. Chemical Society Reviews, 2016, 45, 3311-3312.	18.7	90
35	Hydrogenation of olefins over hydrido chlorocarbonyl tris-(triphenylphosphine) ruthenium(II) complex immobilized on functionalized MCM-41 and SBA-15. Journal of Molecular Catalysis A, 2003, 206, 13-21.	4.8	88
36	Substitution of transition metal ions into aluminophosphates and silicoaluminophosphates: characterization and relation to catalysis. Research on Chemical Intermediates, 2002, 28, 625-695.	1.3	87

#	Article	IF	CITATIONS
37	Hydrogenated Anatase: Strong Photocatalytic Dihydrogen Evolution without the Use of a Coâ€Catalyst. Angewandte Chemie - International Edition, 2014, 53, 14201-14205.	7.2	87
38	Direct Synthesis of Novel FeSBA-1 Cubic Mesoporous Catalyst and Its High Activity in thetert-Butylation of Phenol. Advanced Materials, 2004, 16, 1817-1821.	11.1	84
39	Highly active and selective AlSBA-15 catalysts for the vapor phase tert-butylation of phenol. Applied Catalysis A: General, 2005, 281, 207-213.	2.2	84
40	Selective Oxidations of Linear Alkanes with Molecular Oxygen on Molecular Sieve Catalysts—A Breakthrough?. Angewandte Chemie - International Edition, 2000, 39, 888-890.	7.2	82
41	Mechanical Stability of Mesoporous Molecular Sieve MCM-48 Studied by Adsorption of Benzene, n-Heptane, and Cyclohexane. Journal of Physical Chemistry B, 1999, 103, 6230-6235.	1.2	81
42	Mesoporous FeAlMCM-41: an improved catalyst for the vapor phase tert-butylation of phenol. Applied Catalysis A: General, 2004, 265, 1-10.	2.2	76
43	Characterization of Co,Al-MCM-41 and its activity in the t-butylation of phenol using isobutanol. Applied Catalysis A: General, 2004, 268, 139-149.	2.2	74
44	Catalytic Conversion of Methanol to Olefins on SAPO-n (n = 11, 34, and 35), CrAPSO-n, and Crâ^'SAPO-n Molecular Sieves. Chemistry of Materials, 2000, 12, 2781-2787.	3.2	69
45	Structural Phase Transitions and Thermal Hysteresis in the Metalâ^'Organic Framework Compound MIL-53 As Studied by Electron Spin Resonance Spectroscopy. Journal of Physical Chemistry C, 2010, 114, 19443-19451.	1.5	68
46	Synthesis of isomorphously substituted extra-large pore UTL zeolites. Journal of Materials Chemistry, 2012, 22, 15793.	6.7	66
47	Continuous Wave and Pulsed Electron Spin Resonance Spectroscopy of Paramagnetic Framework Cupric Ions in the Zn(II) Doped Porous Coordination Polymer Cu _{3â^'<i>x</i>} Zn _{<i>x</i>} (btc) ₂ . Journal of Physical Chemistry C, 2010, 114, 16630-16639.	1.5	65
48	Timing of calcium nitrate addition affects morphology, dispersity and composition of bioactive glass nanoparticles. RSC Advances, 2016, 6, 95101-95111.	1.7	64
49	Improved activity and stability of lipase immobilized in cage-like large pore mesoporous organosilicas. Microporous and Mesoporous Materials, 2012, 154, 133-141.	2.2	62
50	Synthesis and Characterization of CoSBA-1 Cubic Mesoporous Molecular Sieves. Chemistry of Materials, 2002, 14, 2433-2435.	3.2	60
51	Nobleâ€Metalâ€Free Photocatalytic Hydrogen Evolution Activity: The Impact of Ball Milling Anatase Nanopowders with TiH ₂ . Advanced Materials, 2017, 29, 1604747.	11.1	59
52	Adsorption and separation of amino acids from aqueous solutions on zeolites. Chemical Communications, 2001, , 1978-1979.	2.2	58
53	Formation of Mixed Metal Cu _{3–<i>x</i>} Zn _{<i>x</i>} (btc) ₂ Frameworks with Different Zinc Contents: Incorporation of Zn ²⁺ into the Metal–Organic Framework Structure as Studied by Solid-State NMR. Journal of Physical Chemistry C, 2012, 116, 20866-20873.	1.5	58
54	Oxidation of indole using chloroperoxidase and glucose oxidase immobilized on SBA-15 as tandem biocatalyst. Microporous and Mesoporous Materials, 2008, 113, 523-529.	2.2	57

Martin Hartmann

#	Article	IF	CITATIONS
55	A comparative study of zeolites SSZ-33 and MCM-68 for hydrocarbon trap applications. Microporous and Mesoporous Materials, 2006, 96, 210-215.	2.2	56
56	Hierarchicallyâ€Ordered Zeolites: A Critical Assessment. Advanced Materials Interfaces, 2021, 8, 2001841.	1.9	56
57	Direct synthesis and catalytic evaluation of AlSBA-1. Chemical Communications, 2002, , 1238-1239.	2.2	55
58	Characterization and microporosity analysis of mesoporous carbon molecular sieves by nitrogen and organics adsorption. Catalysis Today, 2005, 102-103, 189-196.	2.2	53
59	Novel solid basic catalysts by nitridation of zeolite beta at low temperature. Microporous and Mesoporous Materials, 2006, 90, 377-383.	2.2	53
60	Electron Spin Resonance and Electron Spin Echo Modulation Studies of Cu(II) Ion Coordination and Adsorbate Interaction in Ion-Exchanged AlMCM-41 Mesoporous Materials. The Journal of Physical Chemistry, 1995, 99, 17251-17258.	2.9	51
61	Covalent Anchoring of Chloroperoxidase and Glucose Oxidase on the Mesoporous Molecular Sieve SBA-15. International Journal of Molecular Sciences, 2010, 11, 762-778.	1.8	48
62	Immobilization of lipase in cage-type mesoporous organosilicas via covalent bonding and crosslinking. Catalysis Today, 2015, 243, 173-183.	2.2	48
63	<i>In situ</i> Raman and FTIR spectroscopic study on the formation of the isomers MIL-68(Al) and MIL-53(Al). RSC Advances, 2020, 10, 7336-7348.	1.7	48
64	Formation and Stability of Ni(I) Ions in MCM-41 Mesoporous Molecular Sieves. The Journal of Physical Chemistry, 1995, 99, 17494-17496.	2.9	47
65	Oxidation of adamantane by urea hydroperoxide using vanadium complex anchored onto functionalized Si-MCM-41. Journal of Molecular Catalysis A, 2004, 207, 131-137.	4.8	47
66	Fingerprinting diverse nanoporous materials for optimal hydrogen storage conditions using meta-learning. Science Advances, 2021, 7, .	4.7	47
67	Novel Organic/Inorganic Hybrid Materials by Covalent Anchoring of Phenothiazines on MCM-41. Chemistry of Materials, 2008, 20, 4986-4992.	3.2	46
68	Synthesis and Characterization of Mn-Containing Cubic Mesoporous MCM-48 and AlMCM-48 Molecular Sieves. Chemistry of Materials, 1999, 11, 2928-2936.	3.2	45
69	Evaluation of Pt/MCM-41//MgAPO-n composite catalysts for isomerization and hydrocracking of n-decane. Journal of Catalysis, 2003, 217, 388-395.	3.1	45
70	Electron Spin Resonance and Electron Spin Echo Modulation Study of Ni(I) in Silicoaluminophosphate Type 5: Adsorbate Interactions and Evidence for the Framework Incorporation of Ni(I). The Journal of Physical Chemistry, 1995, 99, 10988-10994.	2.9	43
71	Elucidation of the Formation Mechanism of Metal–Organic Frameworks via in-Situ Raman and FTIR Spectroscopy under Solvothermal Conditions. Journal of Physical Chemistry C, 2018, 122, 12267-12278.	1.5	43
72	Preparation and characterization of ruthenium clusters on mesoporous supports. Microporous and Mesoporous Materials, 2001, 44-45, 385-394.	2.2	41

#	Article	IF	CITATIONS
73	Shaping of Flexible Metalâ€Organic Frameworks: Combining Macroscopic Stability and Framework Flexibility. European Journal of Inorganic Chemistry, 2019, 2019, 4700-4709.	1.0	41

Physicochemical Characterization of Chromium Oxides Immobilized in Mesoporous MeMCM-41 (Me =) Tj ETQq0 0 0 rgBT /Overlock 10 1.2

75	Formation of Crossâ€Linked Chloroperoxidase Aggregates in the Pores of Mesocellular Foams: Characterization by SANS and Catalytic Properties. ChemSusChem, 2009, 2, 161-164.	3.6	40
76	Synthesis of the novel MOF hcp UiO-66 employing ionic liquids as a linker precursor. Dalton Transactions, 2018, 47, 14426-14430.	1.6	39
77	Broadband dielectric spectroscopy of water confined in MCM-41 molecular sieve materials—low-temperature freezing phenomena. Journal of Physics Condensed Matter, 2005, 17, 2843-2857.	0.7	38
78	Title is missing!. Catalysis Letters, 2002, 80, 35-40.	1.4	37
79	Hydrothermal incorporation of manganese in the framework of SBA-15. Catalysis Communications, 2007, 8, 493-497.	1.6	35
80	Synthesis of multilamellar MFI-type zeolites under static conditions: The role of gel composition on their properties. Microporous and Mesoporous Materials, 2014, 190, 324-333.	2.2	35
81	In situ cracking of silica beads in the SEM and TEM — Effect of particle size on structure–property correlations. Powder Technology, 2015, 270, 337-347.	2.1	35
82	Synthesis, Characterization, and Adsorbate Interactions of CoAPO-41 and CoAPSO-41 Molecular Sieves. Journal of Physical Chemistry B, 1997, 101, 6819-6826.	1.2	34
83	Selective oxidation of indole by chloroperoxidase immobilized on the mesoporous molecular sieve SBA-15. Journal of Porous Materials, 2006, 13, 347-352.	1.3	34
84	Spectroscopic characterization of iron-containing MCM-58. Microporous and Mesoporous Materials, 2006, 89, 47-57.	2.2	33
85	Olefin/Paraffin Separation Potential of ZIFâ€9 and ZIFâ€71: A Combined Experimental and Theoretical Study. European Journal of Inorganic Chemistry, 2016, 2016, 4440-4449.	1.0	33
86	Direct Synthesis and Spectroscopic Evidence of Framework Co(II) ions in SBA-15 Mesoporous Molecular Sieves. Chemistry Letters, 2004, 33, 588-589.	0.7	32
87	Correlation of Enhanced Strength and Internal Structure for Heatâ€Treated Submicron Stöber Silica Particles. Particle and Particle Systems Characterization, 2014, 31, 664-674.	1.2	32
88	Adsorption of nitric oxide in metal-organic frameworks: Low temperature IR and EPR spectroscopic evaluation of the role of open metal sites. Microporous and Mesoporous Materials, 2015, 216, 97-110.	2.2	32
89	Hierarchical ZSMâ€5 Catalysts: The Effect of Different Intracrystalline Pore Dimensions on Catalyst Deactivation Behaviour in the MTO Reaction. ChemCatChem, 2020, 12, 2461-2468.	1.8	32
90	Nickel(I) Location and Adsorbate Interactions in Nickel(II)-Exchanged Silicoaluminophosphate Type 5 As Determined by Electron Spin Resonance and Electron Spin Echo Modulation Spectroscopies. The Journal of Physical Chemistry, 1995, 99, 6670-6676.	2.9	31

#	Article	IF	CITATIONS
91	Covalent Immobilization of Imidazolium Cations Inside a Silica Support: Palladiumâ€Catalyzed Olefin Hydrogenation. ChemCatChem, 2012, 4, 395-400.	1.8	31
92	Novel geopolymers incorporating red mud and waste glass cullet. Materials Letters, 2018, 219, 152-154.	1.3	31
93	Characterization and catalytic evaluation of mesoporous and microporous molecular sieves containing niobium. Catalysis Today, 2003, 78, 467-475.	2.2	30
94	A new route for the synthesis of manganese incorporated SBA-15. Microporous and Mesoporous Materials, 2008, 112, 53-60.	2.2	30
95	Nitric Oxide Adsorption in MIL-100(Al) MOF Studied by Solid-State NMR. Journal of Physical Chemistry C, 2018, 122, 12723-12730.	1.5	30
96	Synthesis and redox properties of MCM-48 containing copper and zinc. Chemical Communications, 1997, , 2367-2368.	2.2	29
97	Coordination Geometry of the Copperâ~'Pyridine Complex in Frozen Solution As Studied by Proton and Deuterium Two-Dimensional Hyperfine Sublevel Correlation Electron Spin Resonance Spectroscopy. Journal of Physical Chemistry A, 1998, 102, 3599-3606.	1.1	28
98	Synthesis of highly acidic and well ordered MgAl-MCM-41 and its catalytic performance on the isopropylation of m-cresol. Microporous and Mesoporous Materials, 2004, 76, 91-98.	2.2	28
99	A Combined Pulsed Electron Paramagnetic Resonance Spectroscopic and DFT Analysis of the ¹³ CO ₂ and ¹³ CO Adsorption on the Metal–Organic Framework Cu _{2.97} Zn _{0.03} (btc) ₂ . Journal of Physical Chemistry C, 2013, 117, 8231-8240.	1.5	28
100	Formation of cross-linked glucose oxidase aggregates in mesocellular foams. Journal of Materials Science, 2009, 44, 6747-6753.	1.7	27
101	Direct oxidation of benzene to phenol over hierarchical ZSM-5 zeolites prepared by sequential post synthesis modification. Microporous and Mesoporous Materials, 2017, 237, 151-159.	2.2	27
102	Solvent-free transformation of spray coated ZnO layers to ZIF-8 membranes. Microporous and Mesoporous Materials, 2019, 276, 29-40.	2.2	26
103	Synthesis, characterisation and catalytic performance of HMCM-22 of different silica to alumina ratios. Journal of Molecular Catalysis A, 2007, 272, 38-44.	4.8	25
104	Zirconia supported phosphotungstic acid as an efficient catalyst for resorcinol tert-butylation and n-heptane hydroisomerization. Journal of Molecular Catalysis A, 2004, 221, 113-119.	4.8	24
105	EPR Spectroscopy of Cu(I)â^'NO Adsorption Complexes Formed over Cuâ^'ZSM-5 and Cuâ^'MCM-22 Zeolites. Journal of Physical Chemistry B, 2005, 109, 1537-1546.	1.2	24
106	A Continuous-Wave Electron Paramagnetic Resonance Study of Carbon Dioxide Adsorption on the Metal–Organic Frame-Work MIL-53. Applied Magnetic Resonance, 2014, 45, 269-285.	0.6	24
107	Synthesis of a partially fluorinated ZIF-8 analog for ethane/ethene separation. CrystEngComm, 2017, 19, 5882-5891.	1.3	24
108	¹²⁹ Xe NMR on Porous Materials: Basic Principles and Recent Applications. Advanced Materials Interfaces, 2021, 8, 2001266.	1.9	23

#	Article	IF	CITATIONS
109	Synthesis, electron paramagnetic resonance and electron spin echo modulation studies on synthesized NiAPSO-41 molecular sieve and comparison with ion-exchanged NiH-SAPO-41 molecular sieve. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 1233-1241.	1.7	22
110	Multinuclear MAS NMR study on the microporous aluminophosphates AlPO4-41 and SAPO-41. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 723-727.	1.7	22
111	Synthesis of large molecular sieve crystals with the AFI (AlPO4-5) topology. Catalysis Today, 1999, 49, 261-266.	2.2	22
112	Incorporation of Transition Metal Ions into MeAPO/MeAPSO Molecular Sieves. Journal of Physical Chemistry B, 2000, 104, 1610-1616.	1.2	22
113	Extrusion of AlSBA-15 molecular sieves: An industrial point of view. Catalysis Communications, 2007, 8, 457-461.	1.6	22
114	Preparation of SBA-15 extrudates: Evaluation of textural and mechanical properties. Journal of Porous Materials, 2009, 16, 175-183.	1.3	22
115	Oxidation of indole with CPO and GOx immobilized on mesoporous molecular sieves. Catalysis Today, 2010, 157, 378-383.	2.2	22
116	Catalysis with Microporous Aluminophosphates and Silicoaluminophosphates Containing Transition Metals. Advances in Nanoporous Materials, 2010, 1, 237-312.	0.2	22
117	SAPO-35 Molecular Sieve:Â Synthesis, Characterization, and Adsorbate Interactions of Cu(II) in CuHâ^'SAPO-35. Chemistry of Materials, 1998, 10, 932-941.	3.2	21
118	Continuous Separation of Light Olefin/Paraffin Mixtures on ZIF-4 by Pressure Swing Adsorption and Membrane Permeation. Molecules, 2018, 23, 889.	1.7	21
119	Silver-Assisted Colloidal Synthesis of Stable, Plasmon Resonant Gold Patches on Silica Nanospheres. Langmuir, 2012, 28, 8971-8978.	1.6	20
120	Consecutive interlayer disassembly–reassembly during alumination of UOV zeolites: insight into the mechanism. Journal of Materials Chemistry A, 2017, 5, 22576-22587.	5.2	19
121	An additive-free silicon anode in nanotube morphology as a model lithium ion battery material. Electrochimica Acta, 2021, 388, 138522.	2.6	19
122	Dependence of ethene dimerization activity and selectivity on Ni I in ion-exchange vs. framework sites in SAPO-5 and SAPO-11 materials. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 1429.	1.7	18
123	Ethylene dimerization in nickel containing MCM-41 and AIMCM-41 studied by electron spin resonance and gas chromatography. Studies in Surface Science and Catalysis, 1996, , 801-809.	1.5	18
124	Direct synthesis of non-breathing MIL-53(Al)(ht) from a terephthalate-based ionic liquid as linker precursor. Dalton Transactions, 2016, 45, 18443-18446.	1.6	18
125	17O-EPR determination of the structure and dynamics of copper single-metal sites in zeolites. Nature Communications, 2021, 12, 4638.	5.8	18
126	Electronic g values of Na+–NO and Cu+–NO complexes in zeolites: Analysis using a relativistic density functional method. Physical Chemistry Chemical Physics, 2003, 5, 2429-2434.	1.3	16

#	Article	IF	CITATIONS
127	A Rhodium Triphenylphosphine Catalyst for Alkene Hydrogenation Supported on Neat Superparamagnetic Iron Oxide Nanoparticles. ChemCatChem, 2015, 7, 127-136.	1.8	16
128	Boron-containing MFI-type zeolites with a hierarchical nanosheet assembly for lipase immobilization. Dalton Transactions, 2017, 46, 4165-4169.	1.6	16
129	High-field ESR spectroscopy of Cu(I)-NO complexes in zeolite CuZSM-5. Studies in Surface Science and Catalysis, 2002, 142, 375-382.	1.5	15
130	H, D and HD adsorption upon the metal-organic framework [CuZn(btc)] studied by pulsed ENDOR and HYSCORE spectroscopy. Molecular Physics, 2013, 111, 2950-2966.	0.8	15
131	Adsorption and Desorption of HD on the Metal–Organic Framework Cu _{2.97} Zn _{0.03} (Btc) ₂ Studied by Three-Pulse ESEEM Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 28530-28535.	1.5	15
132	Anomaly in the Chain Length Dependence of n-Alkane Diffusion in ZIF-4 Metal-Organic Frameworks. Molecules, 2018, 23, 668.	1.7	15
133	Electron Spin Resonance and Electron Spin Echo Modulation Studies of Catalytic Ethylene Dimerization on Palladium-Exchanged Silicoaluminophosphate Type 5, 8, and 11 Molecular Sieves. The Journal of Physical Chemistry, 1996, 100, 4606-4611.	2.9	14
134	Generation of ion-exchange capacity by silicon incorporation into the aluminophosphate VPI-5/AIPO4-8 molecular sieve system. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 3661.	1.7	14
135	Synthesis of Niobium- and Tantalum-Containing Silicalite-1. Chemistry Letters, 1999, 28, 407-408.	0.7	14
136	Dynamics of pH-sensitive nitroxide radicals in water adsorbed in ordered mesoporous molecular sieves by EPR Spectroscopy. Microporous and Mesoporous Materials, 2013, 179, 258-264.	2.2	14
137	Electrical potential near hydrated surface of ordered mesoporous molecular sieves assessed by EPR of molecular pH-probes. Microporous and Mesoporous Materials, 2015, 203, 1-7.	2.2	14
138	Synthesis of ZIF-11 - Effect of water residues in the solvent onto the phase transition from ZIF-11 to ZIF-7-III. Microporous and Mesoporous Materials, 2017, 243, 65-68.	2.2	14
139	Synthesis of ZIF-11 $\hat{a} \in$ Influence of the synthesis parameters on the phase purity. Microporous and Mesoporous Materials, 2019, 275, 102-110.	2.2	14
140	Synthesis and characterization of aluminum-containing MCM-48. Studies in Surface Science and Catalysis, 1998, 117, 249-256.	1.5	13
141	Critical Assessment of Electron Spin Resonance Studies on Cu(I)â^'NO Complexes in Cuâ^'ZSM-5 Zeolites Prepared by Solid- and Liquid-State Ion Exchange. Journal of Physical Chemistry B, 2005, 109, 19723-19731.	1.2	13
142	Zeolite oated Porous Arrays: A Novel Strategy for Enzyme Encapsulation. Advanced Functional Materials, 2015, 25, 1832-1836.	7.8	13
143	Key factors for the direct growth of zeolite faujasite (FAU) on metallic aluminum surface. Microporous and Mesoporous Materials, 2018, 271, 252-261.	2.2	13
144	Dielectric response of water confined in MCM-41 molecular sieve material. Physica Status Solidi (B): Basic Research, 2005, 242, R100-R102.	0.7	12

#	Article	IF	CITATIONS
145	Pulsed ENDOR Study of Cu(I)â^'NO Adsorption Complexes in Cuâ^'L Zeolite. Journal of Physical Chemistry B, 2005, 109, 10842-10848.	1.2	12
146	Carbamateâ€Linked (Oligo)phenothiazines in Mesoporous Silica by Postâ€Synthetic Grafting: Fluorescent Redoxâ€Active Hybrid Materials. European Journal of Organic Chemistry, 2009, 2009, 3895-3905.	1.2	12
147	Low-temperature binding of NO adsorbed on MIL-100(Al)—A case study for the application of high resolution pulsed EPR methods and DFT calculations. Journal of Chemical Physics, 2017, 147, 224701.	1.2	12
148	Proton Activity in Nanochannels Revealed by Electron Paramagnetic Resonance of Ionizable Nitroxides: A Test of the Poisson–Boltzmann Double Layer Theory. Journal of Physical Chemistry C, 2018, 122, 20527-20538.	1.5	12
149	The Structure of Monomeric Hydroxo-Cu ^{II} Species in Cu-CHA. A Quantitative Assessment. Journal of the American Chemical Society, 2022, 144, 13079-13083.	6.6	12
150	Oxidation of Indole with CPO and GOx Immobilized on SBA-15. Studies in Surface Science and Catalysis, 2008, 174, 1045-1050.	1.5	11
151	Electrostatic grafting of a triphenylphosphine sulfonate on SBA-15: application in palladium catalyzed hydrogenation. Catalysis Science and Technology, 2012, 2, 1188.	2.1	11
152	Stability, Hydration, and Thermodynamic Properties of RNase A Confined in Surface-Functionalized SBA-15 Mesoporous Molecular Sieves. Journal of Physical Chemistry C, 2014, 118, 21523-21531.	1.5	11
153	Scaleâ€up of the Synthesis of Zeolitic Imidazolate Framework ZIFâ€4. Chemie-Ingenieur-Technik, 2017, 89, 1374-1378.	0.4	11
154	Incorporation of Aluminium and Iron into the Zeolite MCM-58. European Journal of Inorganic Chemistry, 2005, 2005, 1154-1161.	1.0	10
155	Selective Gas Adsorption of Alkane/Alkene in a Single-Crystal and Powder Bimetallic Metal–Organic Framework Compound Cu2.97Zn0.03(btc)2 Studied by Electron Paramagnetic Resonance. Journal of Physical Chemistry C, 2019, 123, 26877-26887.	1.5	10
156	Role of Prenucleation Building Units in Determining Metal–Organic Framework MIL-53(Al) Morphology. Crystal Growth and Design, 2020, 20, 3641-3649.	1.4	10
157	Chapter 4. Hierarchical Zeolites. RSC Catalysis Series, 2017, , 103-145.	0.1	10
158	Characterization of mesoporous molecular sieves containing copper and zinc: An adsorption and TPR study. Studies in Surface Science and Catalysis, 2000, 128, 215-224.	1.5	9
159	Spontaneous Growth of Magnesium Hydroxide Fibers at Ambient Conditions. Crystal Growth and Design, 2014, 14, 4236-4239.	1.4	9
160	Comment on "Insight into the reversible structural crystalline-state transformation from MIL-53(Al) to MIL-68(Al)―by A. Perea-Cachero, E. Romero, C. TéIlez and J. Coronas, <i>CrystEngComm</i> , 2018, 20 , 402. CrystEngComm, 2018, 20, 3117-3119.	1.3	9
161	Hydrogen Release from Ammonia Borane Nanoconfined in Metal–Organic Frameworks with MIL-53 Topology. Journal of Physical Chemistry C, 2021, 125, 9990-10000.	1.5	9
162	Investigation of the optimum conditions for adsorptive hydrogen storage. Emergent Materials, 2021, 4, 1295-1303.	3.2	9

#	Article	IF	CITATIONS
163	A novel aluminophosphate precursor that transforms to AlPO4-5 molecular sieve at high temperature. Chemical Communications, 1997, , 2221-2222.	2.2	8
164	Characterization of mesoporous and microporous molecular sieves containing niobium and tantalum. Studies in Surface Science and Catalysis, 2000, , 201-208.	1.5	8
165	Comparison of the mechanical stability of cubic and hexagonal meso- porous molecular sieves with different pore sizes. Studies in Surface Science and Catalysis, 2003, , 285-288.	1.5	8
166	Electron spin resonance spectroscopy of Cu(I)–NO complexes in copper exchanged zeolites. Journal of Molecular Catalysis A, 2004, 223, 123-128.	4.8	8
167	Location of Vanadium(IV) in VAPO-5 as Studied by Hyperfine Sublevel Correlation Spectroscopy. Chemistry Letters, 2005, 34, 1614-1615.	0.7	8
168	Effect of pretreatment conditions on the catalytic activity of nano-sized TPA/ZrO2 dispersed in SBA-15 channels in acetylation reactions. Microporous and Mesoporous Materials, 2007, 102, 223-233.	2.2	8
169	Exceptional Adsorption and Separation Properties of the Molecular Sieve ZIFâ€8. Chemie-Ingenieur-Technik, 2013, 85, 1707-1713.	0.4	8
170	Phase Transformations in Porous Materials Studied by In Situ Solid-State NMR Spectroscopy and In Situ X-ray Diffraction. Journal of Physical Chemistry C, 2020, 124, 19136-19145.	1.5	8
171	Electron spin resonance studies of Cu(I)NO complexes formed over copper-exchanged three- and unidimensional zeolites. Magnetic Resonance in Chemistry, 2005, 43, S205-S214.	1.1	7
172	Broadband Dielectric Spectroscopy of Water Confined in MCM-41 Molecular Sieve Material. Ferroelectrics, 2005, 318, 201-207.	0.3	7
173	Propylene/Propane Separation in Fixedâ€Bed Adsorber and Membrane Permeation. Chemie-Ingenieur-Technik, 2013, 85, 1694-1699.	0.4	7
174	Immobilization of Cytochrome c on the Cylindrical Mesoporous Silica Extrudates. Journal of Nanoscience and Nanotechnology, 2014, 14, 2606-2613.	0.9	7
175	One‣tep Synthesis of MILâ€53(Al)/Boehmite Composites. Chemie-Ingenieur-Technik, 2017, 89, 887-893.	0.4	7
176	UiOâ€66 and hcp UiOâ€66 Catalysts Synthesized from Ionic Liquids as Linker Precursors. ChemistryOpen, 2021, 10, 233-242.	0.9	7
177	Isomerization and Hydrocracking ofn-Decane over Magnesium-Containing Molecular Sieves with AEL, AFI, and AFO Topology. Chemical Engineering and Technology, 2003, 26, 1232-1235.	0.9	6
178	Densification of Silica Spheres: A New Pathway to Nanoâ€Đimensioned Zeoliteâ€Based Catalysts. Chemistry - A European Journal, 2017, 23, 10983-10986.	1.7	6
179	Synthesis of the zeolitic imidazolate framework ZIF-4 from the ionic liquid 1-butyl-3-methylimidazolium imidazolate. Journal of Chemical Physics, 2018, 148, 193837.	1.2	6
180	Crystal Structure and De- and Rehydration Behavior of Two New Chloride-Containing Zeolitic Imidazolate Frameworks. Crystal Growth and Design, 2019, 19, 4844-4853.	1.4	6

#	Article	IF	CITATIONS
181	Adsorption of Olefins at Cupric Ions in Metal–Organic Framework HKUST-1 Explored by Hyperfine Spectroscopy. Journal of Physical Chemistry Letters, 2019, 10, 7657-7664.	2.1	6
182	Electron spin resonance and electron spin echo modulation spectroscopy of Ni(I) in SAPO-5 and SAPO-11. Studies in Surface Science and Catalysis, 1995, 97, 335-342.	1.5	5
183	Experimental and Theoretical Analysis of the Influence of Different Linker Molecules in Imidazolate Frameworks Potsdam (IFP-n) on the Separation of Olefin–Paraffin Mixtures. Langmuir, 2017, 33, 11170-11179.	1.6	5
184	Effect of Confinement on the Freezing-Melting Dynamics of Water. Materials Science Forum, 2006, 514-516, 1255-1259.	0.3	4
185	Effect of Confinement on the Dynamics of Methanol. Ferroelectrics, 2007, 346, 173-180.	0.3	4
186	Optical investigation of diffusion of single Ag markers in confined water films. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	4
187	Präarationsprinzipien mikroporöser Materialien: Vom <i>building block</i> zum hierarchisch aufgebauten porösen System. Chemie-Ingenieur-Technik, 2016, 88, 237-257.	0.4	4
188	Comment on "The solvent and zinc source dual-induced synthesis of a two dimensional zeolitic imidazolate framework with a farfalle-shape and its crystal transformation to zeolitic imidazolate framework-8―by CX. Jin et al., 2020, 49, 2437. Dalton Transactions, 2021, 50, 398-400.	1.6	4
189	LCA in Process Development: Case Study of the OxFA-Process. Sustainable Production, Life Cycle Engineering and Management, 2019, , 105-113.	0.2	4
190	Dielectric spectroscopy of BaTiO3confined in MCM-41 mesoporous molecular sieve materials. European Physical Journal Special Topics, 2005, 128, 81-85.	0.2	3
191	Shaping of mesoporous molecular sieves. Studies in Surface Science and Catalysis, 2007, 165, 181-184.	1.5	3
192	Shaping of Mesoporous AlSBA-15 as Cylindrical Nano Reactor for Tertiary Butylation of Phenol. Journal of Nanoscience and Nanotechnology, 2014, 14, 4683-4691.	0.9	3
193	Instantaneous formation of polyoxometalate-based cerium vanadium oxide gels. Inorganic Chemistry Frontiers, 2017, 4, 160-164.	3.0	3
194	Unraveling Complexity: A Strategy for the Characterization of Anisotropic Core Multishell Nanoparticles. Particle and Particle Systems Characterization, 2020, 37, 2000145.	1.2	3
195	In Situ Monitoring of Particle Formation with Spectroscopic and Analytical Techniques Under Solvothermal Conditions. Chemical Engineering and Technology, 2020, 43, 879-886.	0.9	3
196	Hierarchicallyâ€Ordered Materials. Advanced Materials Interfaces, 2021, 8, 2100057.	1.9	3
197	Chromium Environment within Cr-Doped Silico-Aluminophosphate Molecular Sieves from Spin Density Studies. Journal of Physical Chemistry C, 2021, 125, 8116-8124.	1.5	3
198	Ethylene dimerization in nickel containing SAPO materials studies by electron spin resonance and gas chromatography:-Influence of the channel size. Studies in Surface Science and Catalysis, 1997, 105, 717-724.	1.5	2

Martin Hartmann

#	ARTICLE	IF	CITATIONS
199	Isomerization and hydrocracking of n-decane over Pt-Pd/AIMCM-41 catalysts. Studies in Surface Science and Catalysis, 2002, , 911-918.	1.5	2
200	Novel approach towards Al-rich AFI for catalytic application. Applied Catalysis A: General, 2019, 577, 62-68.	2.2	2
201	Model development for the separation of a strongly adsorbing gas mixture on a semi-pilot scale adsorber. Separation and Purification Technology, 2019, 217, 48-61.	3.9	2
202	Synthesis of ZIF-11 Membranes: The Influence of Preparation Technique and Support Type. Membranes, 2021, 11, 523.	1.4	2
203	Electron Paramagnetic Resonance Spectroscopic Study of Ascorbate Oxidase Immobilized on Mesoporous Silica Materials. Advanced Porous Materials, 2017, 5, 113-121.	0.3	2
204	Dielectric spectroscopy of Nano BaTiO/sub 3/ confined in MCM-41 mesoporous molecular sieve materials. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 2305-2308.	1.7	1
205	Olefin/paraffin separation over the Metal Organic Framework material Cu3(BTC)2. Studies in Surface Science and Catalysis, 2008, 174, 615-618.	1.5	1
206	Spektroskopische Charakterisierung von porösen Materialien – Stand der Technik und Zukunftsperspektiven. Chemie-Ingenieur-Technik, 2010, 82, 805-822.	0.4	1
207	Synthesis and Catalytic Performance of Aluminiumâ€containing Mesoporous, Spherical Silica Particles. Chemie-Ingenieur-Technik, 2021, 93, 1001-1010.	0.4	1
208	Isomerization and hydrocracking of n-decane over Pt/MCM-41//MgAPO-n composite catalysts. Studies in Surface Science and Catalysis, 2003, , 741-744.	1.5	0
209	Direct Synthesis and Spectroscopic Evidence of Framework Co(II) Ions in SBA-15 Mesoporous Molecular Sieves ChemInform, 2004, 35, no.	0.1	0
210	Hierarchical Zeolites: A Proven Strategy to Combine Shape Selectivity with Efficient Mass Transport. ChemInform, 2005, 36, no.	0.1	0
211	Synthesis of ordered mesoporous zinc oxide obtained by dry gel nanocasting from the mesoporous carbon CMK-3. Studies in Surface Science and Catalysis, 2007, 165, 243-246.	1.5	0
212	Dielectric Spectroscopy of Betaine Phosphite Confined in MCM-41 Molecular Sieve Materials. Ferroelectrics, 2007, 353, 97-103.	0.3	0
213	Poröse Materialien: Kleine Löcher - groï;½2eÂWirkung. Chemie-Ingenieur-Technik, 2010, 82, 739-739.	0.4	0
214	PERIODIC MESOPOROUS ORGANOSILICAS: Mesoporous Organosilicas With Large Cage-Like Pores for High Efficiency Immobilization of Enzymes (Adv. Mater. 22-23/2011). Advanced Materials, 2011, 23, 2616-2616.	11.1	0
215	Uptake and release characteristics of serotonin hydrochloride by natural Cuban zeolite containing clinoptilolite and mordenite. Scientific Reports, 2021, 11, 14277.	1.6	0
216	Lattice Modification and Morphological Control of Halide-Substituted <i>yqt</i> -Type Zeolitic Imidazolate Frameworks Zn ₃ mim ₅ X, with X = F, Br, Cl, or OH. Crystal Growth and Design, 0, , .	1.4	0