Timothy M Lohman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/773447/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>Mycobacterium tuberculosis</i> DNA repair helicase UvrD1 is activated by redox-dependent dimerization via a 2B domain cysteine. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	9
2	How Glutamate Promotes Liquid-liquid Phase Separation and DNA Binding Cooperativity of E. coli SSB Protein. Journal of Molecular Biology, 2022, 434, 167562.	2.0	25
3	Replication Nonhexameric SF1 DNA Helicases/Translocases. , 2021, , 98-103.		0
4	Allosteric effects of SSB C-terminal tail on assembly of E. coli RecOR proteins. Nucleic Acids Research, 2021, 49, 1987-2004.	6.5	12
5	Probing E.Âcoli SSB protein-DNA topology by reversing DNA backbone polarity. Biophysical Journal, 2021, 120, 1522-1533.	0.2	1
6	Regulation of E. coli Rep helicase activity by PriC. Journal of Molecular Biology, 2021, 433, 167072.	2.0	13
7	Heterogeneity in E. coli RecBCD Helicase-DNA Binding and Base Pair Melting. Journal of Molecular Biology, 2021, 433, 167147.	2.0	9
8	Kinetic and structural mechanism for DNA unwinding by a non-hexameric helicase. Nature Communications, 2021, 12, 7015.	5.8	10
9	Development of a single-stranded DNA-binding protein fluorescent fusion toolbox. Nucleic Acids Research, 2020, 48, 6053-6067.	6.5	16
10	Comparative Analysis of CPI-Motif Regulation of Biochemical Functions of Actin Capping Protein. Biochemistry, 2020, 59, 1202-1215.	1.2	10
11	Dynamics of E. coli single stranded DNA binding (SSB) protein-DNA complexes. Seminars in Cell and Developmental Biology, 2019, 86, 102-111.	2.3	94
12	Protein Environment and DNA Orientation Affect Protein-Induced Cy3 Fluorescence Enhancement. Biophysical Journal, 2019, 117, 66-73.	0.2	31
13	Are the intrinsically disordered linkers involved in SSB binding to accessory proteins?. Nucleic Acids Research, 2019, 47, 8581-8594.	6.5	26
14	UvrD helicase activation by MutL involves rotation of its 2B subdomain. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16320-16325.	3.3	31
15	A novel chlorophyll protein complex in the repair cycle of photosystem II. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21907-21913.	3.3	34
16	Regulation of Rep helicase unwinding by an auto-inhibitory subdomain. Nucleic Acids Research, 2019, 47, 2523-2532.	6.5	24
17	Regulation of Nearest-Neighbor Cooperative Binding of E.Âcoli SSB Protein to DNA. Biophysical Journal, 2019, 117, 2120-2140.	0.2	23
18	Structural Mechanisms of Cooperative DNA Binding by Bacterial Single-Stranded DNA-Binding Proteins. Journal of Molecular Biology, 2019, 431, 178-195.	2.0	31

#	Article	IF	CITATIONS
19	How Does a Helicase Unwind DNA? Insights from RecBCD Helicase. BioEssays, 2018, 40, e1800009.	1.2	24
20	Regulation of UvrD Helicase Activity by MutL. Journal of Molecular Biology, 2018, 430, 4260-4274.	2.0	22
21	Large domain movements upon UvrD dimerization and helicase activation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12178-12183.	3.3	41
22	Modulation of Escherichia coli UvrD Single-Stranded DNA Translocation by DNA Base Composition. Biophysical Journal, 2017, 113, 1405-1415.	0.2	10
23	Glutamate promotes SSB protein–protein Interactions via intrinsically disordered regions. Journal of Molecular Biology, 2017, 429, 2790-2801.	2.0	46
24	Chemo-mechanical pushing of proteins along single-stranded DNA. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6194-6199.	3.3	44
25	Is a fully wrapped SSB–DNA complex essential forEscherichia colisurvival?. Nucleic Acids Research, 2016, 44, 4317-4329.	6.5	11
26	Defining Single Molecular Forces Required for Notch Activation Using Nano Yoyo. Nano Letters, 2016, 16, 3892-3897.	4.5	73
27	Processive DNA Unwinding by RecBCD Helicase in the Absence of Canonical Motor Translocation. Journal of Molecular Biology, 2016, 428, 2997-3012.	2.0	13
28	Active displacement of RecA filaments by UvrD translocase activity. Nucleic Acids Research, 2015, 43, 4133-4149.	6.5	58
29	Intrinsically Disordered C-Terminal Tails of E. coli Single-Stranded DNA Binding Protein Regulate Cooperative Binding to Single-Stranded DNA. Journal of Molecular Biology, 2015, 427, 763-774.	2.0	90
30	Direct observation of structure-function relationship in a nucleic acid–processing enzyme. Science, 2015, 348, 352-354.	6.0	161
31	Structural dynamics of E. coli single-stranded DNA binding protein reveal DNA wrapping and unwrapping pathways. ELife, 2015, 4, .	2.8	78
32	Ultrafast Redistribution of E. coli SSB along Long Single-Stranded DNA via Intersegment Transfer. Journal of Molecular Biology, 2014, 426, 2413-2421.	2.0	57
33	Diffusion of Human Replication Protein A along Single-Stranded DNA. Journal of Molecular Biology, 2014, 426, 3246-3261.	2.0	120
34	Multiple C-Terminal Tails within a Single E. coli SSB Homotetramer Coordinate DNA Replication and Repair. Journal of Molecular Biology, 2013, 425, 4802-4819.	2.0	65
35	Direct imaging of single UvrD helicase dynamics on long single-stranded DNA. Nature Communications, 2013, 4, 1878.	5.8	88
36	Asymmetric Regulation of Bipolar Single-stranded DNA Translocation by the Two Motors within Escherichia coli RecBCD Helicase. Journal of Biological Chemistry, 2013, 288, 1055-1064.	1.6	24

#	Article	IF	CITATIONS
37	Srs2 prevents Rad51 filament formation by repetitive motion on DNA. Nature Communications, 2013, 4, 2281.	5.8	86
38	SSB–DNA Binding Monitored by Fluorescence Intensity and Anisotropy. Methods in Molecular Biology, 2012, 922, 55-83.	0.4	38
39	Single-Stranded DNA Translocation of E. coli UvrD Monomer Is Tightly Coupled to ATP Hydrolysis. Journal of Molecular Biology, 2012, 418, 32-46.	2.0	30
40	Plasmodium falciparum SSB Tetramer Wraps Single-Stranded DNA with Similar Topology but Opposite Polarity to E. coli SSB. Journal of Molecular Biology, 2012, 420, 269-283.	2.0	36
41	Plasmodium falciparum SSB Tetramer Binds Single-Stranded DNA Only in a Fully Wrapped Mode. Journal of Molecular Biology, 2012, 420, 284-295.	2.0	25
42	Fluorescence Methods to Study DNA Translocation and Unwinding Kinetics by Nucleic Acid Motors. Methods in Molecular Biology, 2012, 875, 85-104.	0.4	19
43	The Primary and Secondary Translocase Activities within E. coli RecBC Helicase Are Tightly Coupled to ATP Hydrolysis by the RecB Motor. Journal of Molecular Biology, 2012, 423, 303-314.	2.0	19
44	SSB Binding to ssDNA Using Isothermal Titration Calorimetry. Methods in Molecular Biology, 2012, 922, 37-54.	0.4	12
45	Single-Molecule Views of Protein Movement on Single-Stranded DNA. Annual Review of Biophysics, 2012, 41, 295-319.	4.5	114
46	Self-Assembly ofEscherichia coliMutL and Its Complexes with DNA. Biochemistry, 2011, 50, 7868-7880.	1.2	11
47	Single-Molecule Nanopositioning: Structural Transitions of a Helicase-DNA Complex during ATP Hydrolysis. Biophysical Journal, 2011, 101, 976-984.	0.2	11
48	SSB Functions as a Sliding Platform that Migrates on DNA via Reptation. Cell, 2011, 146, 222-232.	13.5	180
49	Rotations of the 2B Sub-domain of E. coli UvrD Helicase/Translocase Coupled to Nucleotide and DNA Binding. Journal of Molecular Biology, 2011, 411, 633-648.	2.0	57
50	E. coli SSB tetramer binds the first and second molecules of (dT)35 with heat capacities of opposite sign. Biophysical Chemistry, 2011, 159, 48-57.	1.5	10
51	Escherichia coli RecBC helicase has two translocase activities controlled by a single ATPase motor. Nature Structural and Molecular Biology, 2010, 17, 1210-1217.	3.6	49
52	5′-Single-stranded/duplex DNA junctions are loading sites for E. coli UvrD translocase. EMBO Journal, 2010, 29, 3826-3839.	3.5	41
53	Regulation of Single-stranded DNA Binding by the C Termini of Escherichia coli Single-stranded DNA-binding (SSB) Protein. Journal of Biological Chemistry, 2010, 285, 17246-17252.	1.6	83
54	Binding of the Dimeric <i>Deinococcus radiodurans</i> Single-Stranded DNA Binding Protein to Single-Stranded DNA. Biochemistry, 2010, 49, 8266-8275.	1.2	30

#	Article	IF	CITATIONS
55	Binding Specificity of <i>Escherichia coli</i> Single-Stranded DNA Binding Protein for the χ Subunit of DNA pol III Holoenzyme and PriA Helicase. Biochemistry, 2010, 49, 3555-3566.	1.2	73
56	Clipping Along. Journal of Molecular Biology, 2010, 399, 663-664.	2.0	2
57	PcrA Helicase Dismantles RecA Filaments by Reeling in DNA in Uniform Steps. Cell, 2010, 142, 544-555.	13.5	156
58	Ensemble methods for monitoring enzyme translocation along single stranded nucleic acids. Methods, 2010, 51, 269-276.	1.9	29
59	SSB protein diffusion on single-stranded DNA stimulates RecA filament formation. Nature, 2009, 461, 1092-1097.	13.7	251
60	Srs2 Disassembles Rad51 Filaments by a Protein-Protein Interaction Triggering ATP Turnover and Dissociation of Rad51 from DNA. Molecular Cell, 2009, 35, 105-115.	4.5	140
61	Kinetics of Motor Protein Translocation on Single-Stranded DNA. Methods in Molecular Biology, 2009, 587, 45-56.	0.4	14
62	Non-hexameric DNA helicases and translocases: mechanisms and regulation. Nature Reviews Molecular Cell Biology, 2008, 9, 391-401.	16.1	317
63	Kinetic Control of Mg2+-dependent Melting of Duplex DNA Ends by Escherichia coli RecBC. Journal of Molecular Biology, 2008, 378, 761-777.	2.0	15
64	Influence of DNA End Structure on the Mechanism of Initiation of DNA Unwinding by the Escherichia coli RecBCD and RecBC Helicases. Journal of Molecular Biology, 2008, 382, 312-326.	2.0	26
65	SSB as an Organizer/Mobilizer of Genome Maintenance Complexes. Critical Reviews in Biochemistry and Molecular Biology, 2008, 43, 289-318.	2.3	487
66	Bacillus stearothermophilus PcrA Monomer Is a Single-stranded DNA Translocase but Not a Processive Helicase in Vitro. Journal of Biological Chemistry, 2007, 282, 27076-27085.	1.6	110
67	Dynamic Structural Rearrangements Between DNA Binding Modes of E. coli SSB Protein. Journal of Molecular Biology, 2007, 369, 1244-1257.	2.0	137
68	A Nonuniform Stepping Mechanism for E. coli UvrD Monomer Translocation along Single-Stranded DNA. Molecular Cell, 2007, 26, 335-347.	4.5	112
69	Effects of Monovalent Anions on a Temperature-Dependent Heat Capacity Change forEscherichia coliSSB Tetramer Binding to Single-Stranded DNAâ€. Biochemistry, 2006, 45, 5190-5205.	1.2	34
70	Saccharomyces cerevisiaeReplication Protein A Binds to Single-Stranded DNA in Multiple Salt-Dependent Modesâ€. Biochemistry, 2006, 45, 11958-11973.	1.2	77
71	Microsecond Dynamics of Protein–DNA Interactions: Direct Observation of the Wrapping/Unwrapping Kinetics of Single-stranded DNA around the E.coli SSB Tetramer. Journal of Molecular Biology, 2006, 359, 55-65.	2.0	67
72	Probing 3′-ssDNA Loop Formation in E. coli RecBCD/RecBC–DNA Complexes Using Non-natural DNA: A Model for "Chi―Recognition Complexes. Journal of Molecular Biology, 2006, 362, 26-43.	2.0	22

#	Article	IF	CITATIONS
73	Repetitive shuttling of a motor protein on DNA. Nature, 2005, 437, 1321-1325.	13.7	254
74	Autoinhibition of Escherichia coli Rep monomer helicase activity by its 2B subdomain. Proceedings of the United States of America, 2005, 102, 10076-10081.	3.3	126
75	Energetics of DNA End Binding by E.coli RecBC and RecBCD Helicases Indicate Loop Formation in the 3′-Single-stranded DNA Tail. Journal of Molecular Biology, 2005, 352, 765-782.	2.0	38
76	The C-terminal domain of full-lengthE. coliSSB is disordered even when bound to DNA. Protein Science, 2004, 13, 1942-1947.	3.1	139
77	DNA-binding Orientation and Domain Conformation of the E.coli Rep Helicase Monomer Bound to a Partial Duplex Junction: Single-molecule Studies of Fluorescently Labeled Enzymes. Journal of Molecular Biology, 2004, 336, 395-408.	2.0	159
78	Fluorescence Stopped-flow Studies of Single Turnover Kinetics of E.coli RecBCD Helicase-catalyzed DNA Unwinding. Journal of Molecular Biology, 2004, 339, 731-750.	2.0	76
79	Effects of Temperature and ATP on the Kinetic Mechanism and Kinetic Step-size for E.coli RecBCD Helicase-catalyzed DNA Unwinding. Journal of Molecular Biology, 2004, 339, 751-771.	2.0	45
80	ATP-dependent Translocation of Proteins along Single-stranded DNA: Models and Methods of Analysis of Pre-steady State Kinetics. Journal of Molecular Biology, 2004, 344, 1265-1286.	2.0	67
81	Mechanism of ATP-dependent Translocation of E.coli UvrD Monomers Along Single-stranded DNA. Journal of Molecular Biology, 2004, 344, 1287-1309.	2.0	187
82	Probing Single-Stranded DNA Conformational Flexibility Using Fluorescence Spectroscopy. Biophysical Journal, 2004, 86, 2530-2537.	0.2	565
83	DNA Helicases: Dimeric Enzyme Action. , 2004, , 618-623.		1
84	Self-association Equilibria of Escherichia coli UvrD Helicase Studied by Analytical Ultracentrifugation. Journal of Molecular Biology, 2003, 325, 889-912.	2.0	49
85	A Dimer of Escherichia coli UvrD is the Active Form of the Helicase In Vitro. Journal of Molecular Biology, 2003, 325, 913-935.	2.0	194
86	General Methods for Analysis of Sequential "n-step―Kinetic Mechanisms: Application to Single Turnover Kinetics of Helicase-Catalyzed DNA Unwinding. Biophysical Journal, 2003, 85, 2224-2239.	0.2	131
87	Kinetic Mechanism for Formation of the Active, Dimeric UvrD Helicase-DNA Complex. Journal of Biological Chemistry, 2003, 278, 31930-31940.	1.6	50
88	DNA helicases, motors that move along nucleic acids: Lessons from the SF1 helicase superfamily. The Enzymes, 2003, , 303-VII.	0.7	12
89	The 2B domain of the Escherichia coli Rep protein is not required for DNA helicase activity. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16006-16011.	3.3	63
90	Stopped-Flow Studies of the Kinetics of Single-Stranded DNA Binding and Wrapping around theEscherichia coliSSB Tetramerâ€. Biochemistry, 2002, 41, 6032-6044.	1.2	90

#	Article	IF	CITATIONS
91	Kinetic Mechanism of Direct Transfer ofEscherichia coliSSB Tetramers between Single-Stranded DNA Moleculesâ€. Biochemistry, 2002, 41, 11611-11627.	1.2	86
92	DNA Unwinding Step-size of E.coli RecBCD Helicase Determined from Single Turnover Chemical Quenched-flow Kinetic Studies. Journal of Molecular Biology, 2002, 324, 409-428.	2.0	87
93	Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase. Nature, 2002, 419, 638-641.	13.7	444
94	E. coli Rep oligomers are required to initiate DNA unwinding in vitro. Journal of Molecular Biology, 2001, 310, 327-350.	2.0	135
95	Large contributions of coupled protonation equilibria to the observed enthalpy and heat capacity changes for ssDNA binding toEscherichia coli SSB protein. Proteins: Structure, Function and Bioinformatics, 2000, 41, 8-22.	1.5	52
96	Structure of the DNA binding domain of E. coli SSB bound to ssDNA. Nature Structural Biology, 2000, 7, 648-652.	9.7	416
97	Adenine Base Unstacking Dominates the Observed Enthalpy and Heat Capacity Changes for the Escherichia coli SSB Tetramer Binding to Single-Stranded Oligoadenylates. Biochemistry, 1999, 38, 7388-7397.	1.2	76
98	An oligomeric form of E. coli UvrD is required for optimal helicase activity 1 1Edited by D. E. Draper. Journal of Molecular Biology, 1999, 293, 815-834.	2.0	103
99	Comparisons between the structures of HCV and Rep helicases reveal structural similarities between SF1 and SF2 superâ€families of helicases. Protein Science, 1998, 7, 605-610.	3.1	105
100	Staying on Track: Common Features of DNA Helicases and Microtubule Motors. Cell, 1998, 93, 9-12.	13.5	71
101	Kinetic Mechanism for the Sequential Binding of Two Single-Stranded Oligodeoxynucleotides to theEscherichia coliRep Helicase Dimerâ€. Biochemistry, 1998, 37, 891-899.	1.2	17
102	Calorimetric studies of E. coli SSB protein-single-stranded DNA interactions. Effects of monovalent salts on binding enthalpy 1 1Edited by D. Draper. Journal of Molecular Biology, 1998, 278, 999-1014.	2.0	91
103	A Two-Site Mechanism for ATP Hydrolysis by the Asymmetric Rep Dimer P2S As Revealed by Site-Specific Inhibition with ADPâ~'AlF4â€. Biochemistry, 1997, 36, 3115-3125.	1.2	27
104	Major Domain Swiveling Revealed by the Crystal Structures of Complexes of E. coli Rep Helicase Bound to Single-Stranded DNA and ADP. Cell, 1997, 90, 635-647.	13.5	493
105	A mutation in E. coli SSB protein (W54S) alters intra-tetramer negative cooperativity and inter-tetramer positive cooperativity for single-stranded DNA binding. Biophysical Chemistry, 1997, 64, 235-251.	1.5	23
106	Kinetic Mechanism of DNA Binding and DNA-Induced Dimerization of theEscherichia coliRep Helicaseâ€. Biochemistry, 1996, 35, 2268-2282.	1.2	55
107	Mechanisms of Helicase-Catalyzed DNA Unwinding. Annual Review of Biochemistry, 1996, 65, 169-214.	5.0	728
108	A Highly Salt-Dependent Enthalpy Change for Escherichia coli SSB Proteinâ^'Nucleic Acid Binding Due to Ionâ''Protein Interactions. Biochemistry, 1996, 35, 5272-5279.	1.2	89

#	Article	IF	CITATIONS
109	ATPase Activity ofEscherichia coliRep Helicase Is Dramatically Dependent on DNA Ligation and Protein Oligomeric Statesâ€. Biochemistry, 1996, 35, 5726-5734.	1.2	41
110	ATP Hydrolysis Stimulates Binding and Release of Single Stranded DNA from Alternating Subunits of the DimericE. coliRep Helicase: Implications for ATP-driven Helicase Translocation. Journal of Molecular Biology, 1996, 263, 411-422.	2.0	33
111	Thermodynamics of Charged Oligopeptide-Heparin Interactions. Biochemistry, 1995, 34, 2908-2915.	1.2	97
112	Escherichia Coli Single-Stranded DNA-Binding Protein: Multiple DNA-Binding Modes and Cooperativities. Annual Review of Biochemistry, 1994, 63, 527-570.	5.0	606
113	Co-operative Binding of Escherichia coli SSB Tetramers to Single-stranded DNA in the (SSB)35 Binding Mode. Journal of Molecular Biology, 1994, 236, 106-123.	2.0	101
114	Linkage of pH, Anion and Cation Effects in Protein-Nucleic Acid Equilibria. Journal of Molecular Biology, 1994, 236, 165-178.	2.0	63
115	Single-turnover kinetics of helicase-catalyzed DNA unwinding monitored continuously by fluorescence energy transfer. Biochemistry, 1994, 33, 14306-14316.	1.2	105
116	Effects of Base Composition on the Negative Cooperativity and Binding Mode Transitions of Escherichia coli SSB-Single-Stranded DNA Complexes. Biochemistry, 1994, 33, 6167-6176.	1.2	27
117	Apparent Heat Capacity Change Accompanying a Nonspecific Protein-DNA Interaction. Escherichia coli SSB Tetramer Binding to Oligodeoxyadenylates. Biochemistry, 1994, 33, 12896-12910.	1.2	89
118	Overexpression, purification, DNA binding, and dimerization of the Escherichia coli uvrD gene product (Helicase II). Biochemistry, 1993, 32, 602-612.	1.2	88
119	Escherichia coli Rep helicase unwinds DNA by an active mechanism. Biochemistry, 1993, 32, 6815-6820.	1.2	115
120	Kinetics of Escherichia coli helicase II-catalyzed unwinding of fully duplex and nicked circular DNA. Biochemistry, 1993, 32, 4128-4138.	1.2	21
121	[24] Thermodynamics of ligand-nucleic acid interactions. Methods in Enzymology, 1992, 212, 400-424.	0.4	124
122	[25] Nonspecific ligand-DNA equilibrium binding parameters determined by fluorescence methods. Methods in Enzymology, 1992, 212, 424-458.	0.4	65
123	Cooperative binding of polyamines induces the Escherichia coli single-strand binding protein-DNA binding mode transitions. Biochemistry, 1992, 31, 6166-6174.	1.2	27
124	DNA-induced dimerization of the Escherichia coli Rep helicase. Journal of Molecular Biology, 1991, 221, 1165-1181.	2.0	96
125	Monomers of the Escherichia coli SSB-1 mutant protein bind single-stranded DNA. Journal of Molecular Biology, 1991, 217, 63-74.	2.0	45
126	[15] Thermodynamic methods for model-independent determination of equilibrium binding isotherms for protein-DNA interactions: Spectroscopic approaches to monitor binding. Methods in Enzymology, 1991, 208, 258-290.	0.4	113

#	Article	IF	CITATIONS
127	On the cooperative binding of large ligands to a one-dimensional homogeneous lattice: The generalized three-state lattice model. Biopolymers, 1989, 28, 1637-1643.	1.2	73
128	Negative co-operativity in Escherichia coli single strand binding protein-oligonucleotide interactions. Journal of Molecular Biology, 1989, 207, 249-268.	2.0	73
129	Negative co-operativity in Escherichia coli single strand binding protein-oligonucleotide interactions. Journal of Molecular Biology, 1989, 207, 269-288.	2.0	77
130	Negative cooperativity within individual tetramers of Escherichia coli single strand binding protein is responsible for the transition between the (SSB)35 and (SSB)56 DNA binding modes. Biochemistry, 1988, 27, 2260-2265.	1.2	74
131	Equilibrium binding of Escherichia coli single-strand binding protein to single-stranded nucleic acids in the (SSB)65 binding mode. Cation and anion effects and polynucleotide specificity. Biochemistry, 1988, 27, 456-471.	1.2	167
132	Interactions of the E. coli Single Strand Binding (SSB) protein with ss nucleic acids. Binding mode transitions and equilibrium binding studies. Biochemical Pharmacology, 1988, 37, 1781-1782.	2.0	17
133	Limited co-operativity in protein-nucleic acid interactions. Journal of Molecular Biology, 1987, 195, 897-907.	2.0	78
134	A general method of analysis of ligand-macromolecule equilibria using a spectroscopic signal from the ligand to monitor binding. Application to Escherichia coli single-strand binding protein-nucleic acid interactions. Biochemistry, 1987, 26, 3099-3106.	1.2	118
135	Escherichia coli single-strand binding protein forms multiple, distinct complexes with single-stranded DNA. Biochemistry, 1986, 25, 7799-7802.	1.2	196
136	Kinetics of Protein-Nucleic Acid Interactions: Use of Salt Effects to Probe Mechanisms of Interactio. Critical Reviews in Biochemistry, 1986, 19, 191-245.	7.5	179
137	Large-scale overproduction and rapid purification of the Escherichia coli ssb gene product. Expression of the ssb gene under .lambda. PL control. Biochemistry, 1986, 25, 21-25.	1.2	238
138	Salt-dependent changes in the DNA binding co-operativity of Escherichia coli single strand binding protein. Journal of Molecular Biology, 1986, 187, 603-615.	2.0	183
139	Kinetics and mechanism of dissociation of cooperatively bound T4 gene 32 protein-single-stranded nucleic acid complexes. 1. Irreversible dissociation induced by sodium chloride concentration jumps. Biochemistry, 1984, 23, 4656-4665.	1.2	42
140	Kinetics and mechanism of dissociation of cooperatively bound T4 gene 32 protein single-stranded nucleic acid complexes. 2. Changes in mechanism as a function of sodium chloride concentration and other solution variables. Biochemistry, 1984, 23, 4665-4675.	1.2	34
141	Model for the irreversible dissociation kinetics of cooperatively bound protein-nucleic acid complexes. Biopolymers, 1983, 22, 1697-1713.	1.2	22
142	Kinetics and mechanism of the association of the bacteriophage T4 gene 32 (helix destabilizing) protein with single-stranded nucleic acids. Journal of Molecular Biology, 1981, 152, 67-109.	2.0	69
143	Pentalysine-deoxyribonucleic acid interactions: a model for the general effects of ion concentrations on the interactions of proteins with nucleic acids. Biochemistry, 1980, 19, 3522-3530.	1.2	217
144	Analysis of ion concentration effects on the kinetics of protein-nucleic acid interactions. Biophysical Chemistry, 1978, 8, 281-294.	1.5	90

#	Article	IF	CITATIONS
145	A semiempirical extension of polyelectrolyte theory to the treatment of oligoelectrolytes: Application to oligonucleotide helix-coil transitions. Biopolymers, 1978, 17, 159-166.	1.2	103
146	Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity. Quarterly Reviews of Biophysics, 1978, 11, 103-178.	2.4	1,606
147	Interpretation of monovalent and divalent cation effects on the lac repressor-operator interaction. Biochemistry, 1977, 16, 4791-4796.	1.2	265
148	Ion effects on ligand-nucleic acid interactions. Journal of Molecular Biology, 1976, 107, 145-158.	2.0	1,057
149	Na+ effects on transitions of DNA and polynucleotides of variable linear charge density. Biopolymers, 1976, 15, 893-915.	1.2	124