
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7734309/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Superfast and solvent-free core-shell assembly of sulfur/carbon active particles by hail-inspired nanostorm technology for high-energy-density Li-S batteries. Journal of Energy Chemistry, 2022, 65, 565-573.	12.9	11
2	Faster and better: A polymeric chaperone binder for microenvironment management in thick battery electrodes. Energy Storage Materials, 2022, 45, 828-839.	18.0	23
3	Regulating Polysulfide Diffusion and Deposition via Rational Design of Core–Shell Active Materials in Li–S Batteries. ACS Nano, 2022, 16, 7982-7992.	14.6	29
4	Self-Sensing Actuators Based on a Stiffness Variable Reversible Shape Memory Polymer Enabled by a Phase Change Material. ACS Applied Materials & Interfaces, 2022, 14, 22521-22530.	8.0	19
5	Revisiting the electrode manufacturing: A look into electrode rheology and active material microenvironment. Journal of Energy Chemistry, 2022, 72, 41-55.	12.9	13
6	Templateâ€Free Selfâ€Caging Nanochemistry for Largeâ€Scale Synthesis of Sulfonatedâ€Graphene@Sulfur Nanocage for Longâ€Life Lithiumâ€Sulfur Batteries. Advanced Functional Materials, 2021, 31, 2008652.	14.9	37
7	Rational design and superfast production of biomimetic, calendering-compatible, catalytic, sulfur-rich secondary particles for advanced lithium-sulfur batteries. Energy Storage Materials, 2021, 40, 415-425.	18.0	27
8	Tunable reversible deformation of semicrystalline polymer networks based on temperature memory effect. Polymer, 2021, 232, 124157.	3.8	7
9	Poly(lactic acid) Toughening through Chain End Engineering. ACS Applied Polymer Materials, 2020, 2, 411-417.	4.4	34
10	Bio-treatment of poplar via amino acid for interface control in biocomposites. Composites Part B: Engineering, 2020, 199, 108276.	12.0	16
11	High-Strength Polylactic Acid (PLA) Biocomposites Reinforced by Epoxy-Modified Pine Fibers. ACS Sustainable Chemistry and Engineering, 2020, 8, 13236-13247.	6.7	59
12	Biobinder Nanocoating for Upgrading the Assembling Structures of High-Capacity Composite Electrodes with a Robust Polymeric Artificial Solid Electrolyte Interphase. ACS Applied Materials & Interfaces, 2020, 12, 58201-58211.	8.0	11
13	Toughening by Nanodroplets: Polymer–Droplet Biocomposite with Anomalous Toughness. Macromolecules, 2020, 53, 4568-4576.	4.8	25
14	"See―the invisibles: Inspecting battery separator defects via pressure drop. Energy Storage Materials, 2019, 16, 589-596.	18.0	12
15	A Janus nanofiber-based separator for trapping polysulfides and facilitating ion-transport in lithium–sulfur batteries. Nanoscale, 2019, 11, 18090-18098.	5.6	33
16	Nuomici-Inspired Universal Strategy for Boosting Piezoresistive Sensitivity and Elasticity of Polymer Nanocomposite-Based Strain Sensors. ACS Applied Materials & Interfaces, 2019, 11, 35362-35370.	8.0	16
17	A critical study on a 3D scaffold-based lithium metal anode. Electrochimica Acta, 2019, 318, 220-227.	5.2	15
18	Advanced Graphene@Sulfur composites via an in-situ reduction and wrapping strategy for high energy density lithium–sulfur batteries. Carbon, 2019, 150, 224-232.	10.3	29

#	Article	IF	CITATIONS
19	Towards Sustainable and Multifunctional Air-Filters: A Review on Biopolymer-Based Filtration Materials. Polymer Reviews, 2019, 59, 651-686.	10.9	80
20	Hierarchically Structured All-biomass Air Filters with High Filtration Efficiency and Low Air Pressure Drop Based on Pickering Emulsion. ACS Applied Materials & Interfaces, 2019, 11, 14266-14274.	8.0	52
21	Strategies for Building Robust Traffic Networks in Advanced Energy Storage Devices: A Focus on Composite Electrodes. Advanced Materials, 2019, 31, e1804204.	21.0	69
22	A review of the electrical and mechanical properties of carbon nanofiller-reinforced polymer composites. Journal of Materials Science, 2019, 54, 1036-1076.	3.7	210
23	Natural polypeptides treat pollution complex: Moisture-resistant multi-functional protein nanofabrics for sustainable air filtration. Nano Research, 2018, 11, 4265-4277.	10.4	78
24	A Polymer-Alloy Binder for Structures-Properties Control of Battery Electrodes. Energy Storage Materials, 2018, 14, 149-158.	18.0	21
25	Soy protein-treated nanofillers creating adaptive interfaces in nanocomposites with effectively improved conductivity. Journal of Materials Science, 2018, 53, 8653-8665.	3.7	12
26	Self-Assembled Protein Nanofilter for Trapping Polysulfides and Promoting Li ⁺ Transport in Lithium–Sulfur Batteries. Journal of Physical Chemistry Letters, 2018, 9, 2450-2459.	4.6	35
27	Synergistically effects of copolymer and core-shell particles for toughening epoxy. Polymer, 2018, 140, 39-46.	3.8	56
28	Building Ion-Conduction Highways in Polymeric Electrolytes by Manipulating Protein Configuration. ACS Applied Materials & Interfaces, 2018, 10, 4726-4736.	8.0	26
29	Small Molecules Make a Big Difference: A Solventâ€Controlled Strategy for Building Robust Conductive Network Structures in Highâ€Capacity Electrode Composites. Small Methods, 2018, 2, 1800066.	8.6	15
30	A bio-surfactant for defect control: Multifunctional gelatin coated MWCNTs for conductive epoxy nanocomposites. Composites Science and Technology, 2018, 159, 216-224.	7.8	33
31	Morphology engineering of protein fabrics for advanced and sustainable filtration. Journal of Materials Chemistry A, 2018, 6, 21585-21595.	10.3	69
32	Core–Shell Hybrid Nanowires with Protein Enabling Fast Ion Conduction for Highâ€Performance Composite Polymer Electrolytes. Small, 2018, 14, e1803564.	10.0	22
33	Poly(Vinylidene Fluoride)â€Based Blends as New Binders for Lithiumâ€ŀon Batteries. ChemElectroChem, 2018, 5, 2288-2294.	3.4	20
34	A polymeric nanocomposite interlayer as ion-transport-regulator for trapping polysulfides and stabilizing lithium metal. Energy Storage Materials, 2018, 15, 447-457.	18.0	27
35	A Nanoprotein-Functionalized Hierarchical Composite Air Filter. ACS Sustainable Chemistry and Engineering, 2018, 6, 11606-11613.	6.7	47
36	Seeding Nanoparticles for Hierarchical Self-Assembly. Journal of Physical Chemistry C, 2017, 121, 3560-3566.	3.1	3

#	Article	IF	CITATIONS
37	A Multifunctional Protein Coating for Self-Assembled Porous Nanostructured Electrodes. ACS Omega, 2017, 2, 1679-1686.	3.5	15
38	Gum‣ike Nanocomposites as Conformable, Conductive, and Adhesive Electrode Matrix for Energy Storage Devices. Advanced Energy Materials, 2017, 7, 1601767.	19.5	40
39	Roles of Alkaline Earth Ions in Garnetâ€Type Superionic Conductors. ChemElectroChem, 2017, 4, 266-271.	3.4	23
40	Cross-Linked Protein Nanofilter with Antibacterial Properties for Multifunctional Air Filtration. ACS Applied Materials & Interfaces, 2017, 9, 22846-22855.	8.0	65
41	A Disposable Multi-Functional Air Filter: Paper Towel/Protein Nanofibers with Gradient Porous Structures for Capturing Pollutants of Broad Species and Sizes. ACS Sustainable Chemistry and Engineering, 2017, 5, 6209-6217.	6.7	77
42	Additive Manufacturing With Conductive, Viscoelastic Polymer Composites: Direct-Ink-Writing of Electrolytic and Anodic Poly(Ethylene Oxide) Composites. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2017, 139, .	2.2	17
43	Soy-Protein-Based Nanofabrics for Highly Efficient and Multifunctional Air Filtration. ACS Applied Materials & Interfaces, 2016, 8, 20023-20031.	8.0	139
44	Decoupled Ion Transport in a Protein-Based Solid Ion Conductor. Journal of Physical Chemistry Letters, 2016, 7, 4304-4310.	4.6	38
45	"Green―nano-filters: fine nanofibers of natural protein for high efficiency filtration of particulate pollutants and toxic gases. RSC Advances, 2016, 6, 105948-105956.	3.6	70
46	A protein-reinforced adhesive composite electrolyte. Polymer, 2016, 106, 43-52.	3.8	16
47	Solvent-controlled formation of a reduced graphite oxide gel via hydrogen bonding. RSC Advances, 2016, 6, 27267-27271.	3.6	2
48	Ion-induced effective control of morphologies of soy protein biocomposites. Journal of Materials Science, 2015, 50, 2691-2699.	3.7	4
49	The beauty of frost: nano-sulfur assembly via low pressure vapour deposition. Chemical Communications, 2015, 51, 15967-15970.	4.1	9
50	A Particle ontrolled, Highâ€Performance, Gum‣ike Electrolyte for Safe and Flexible Energy Storage Devices. Advanced Energy Materials, 2015, 5, 1400463.	19.5	42
51	Development of Electrolytes towards Achieving Safe and Highâ€Performance Energyâ€Storage Devices: A Review. ChemElectroChem, 2015, 2, 22-36.	3.4	299
52	Synergistic effect of stereocomplex crystals and shear flow on the crystallization rate of poly(l-lactic acid): A rheological study. RSC Advances, 2014, 4, 2733-2742.	3.6	20
53	Segregated polymeric nanocomposites with tunable three-dimensional network of nanoparticles by controlling the dispersion and distribution. RSC Advances, 2014, 4, 51872-51877.	3.6	2
54	Blossoming of Nanosheet Structures via a Disturbed Self-Assembly. Nano Letters, 2014, 14, 3474-3480.	9.1	4

#	Article	IF	CITATIONS
55	Evaluation of Hydrophobic Polyurethane Foam as Sorbent Material for Oil Spill Recovery. Journal of Macromolecular Science - Pure and Applied Chemistry, 2014, 51, 88-100.	2.2	18
56	Synergistic effects of hybrid graphitic nanofillers on simultaneously enhanced wear and mechanical properties of polymer nanocomposites. European Polymer Journal, 2014, 55, 210-221.	5.4	24
57	Controlled Li + conduction pathway to achieve enhanced ionic conductivity in polymer electrolytes. Journal of Power Sources, 2014, 247, 452-459.	7.8	24
58	A novel hierarchical crystalline structure of injection-molded bars of linear polymer: co-existence of bending and normal shish–kebab structure. Colloid and Polymer Science, 2013, 291, 1503-1511.	2.1	10
59	A Gumâ€Like Electrolyte: Safety of a Solid, Performance of a Liquid. Advanced Energy Materials, 2013, 3, 1557-1562.	19.5	51
60	A RHEOLOGICAL STUDY ON THE CHAIN INTERDIFFUSION OF MISCIBLE POLYMER MELTS. Acta Polymerica Sinica, 2013, 013, 361-366.	0.0	0
61	A thermal method for quantitatively determinating the content of short chain branching in ethylene/α-olefin copolymers. Journal of Thermal Analysis and Calorimetry, 2012, 110, 1389-1394.	3.6	7
62	A rheological study on temperature dependent microstructural changes of fumed silica gels in dodecane. Soft Matter, 2012, 8, 10457.	2.7	34
63	Evolution of agglomerate structure of carbon nanotubes in multi-walled carbon nanotubes/polymer composite melt: A rheo-electrical study. Composites Part B: Engineering, 2012, 43, 3281-3287.	12.0	20
64	Gelation of attractive particles in polymer melt. Polymer, 2012, 53, 4293-4299.	3.8	14
65	Crystallization, rheological behavior and mechanical properties of poly(vinylidene fluoride) composites containing graphitic fillers: a comparative study. Polymer International, 2012, 61, 1031-1040.	3.1	13
66	Melt viscoelasticity, electrical conductivity, and crystallization of PVDF/MWCNT composites: Effect of the dispersion of MWCNTs. Journal of Applied Polymer Science, 2012, 125, E49.	2.6	37
67	A comparison of melt and solution mixing on the dispersion of carbon nanotubes in a poly(vinylidene) Tj ETQq1 🕻	l 0,78431 12.0	4 rgBT /Over
68	Morphologies of injection molded isotactic polypropylene/ultra high molecular weight polyethylene blends. Materials & Design, 2012, 35, 633-639.	5.1	39
69	Crystallization and reinforcement of poly (vinylidene fluoride) nanocomposites: Role of high molecular weight resin and carbon nanotubes. Polymer Testing, 2012, 31, 117-126.	4.8	37
70	Dynamic Electrical and Rheological Percolation in Isotactic Poly(propylene)/Carbon Black Composites. Macromolecular Materials and Engineering, 2012, 297, 51-59.	3.6	24
71	Control of morphology and properties by the selective distribution of nano-silica particles with different surface characteristics in PA6/ABS blends. Journal of Materials Science, 2012, 47, 4620-4631.	3.7	34
72	Structure of fumed silica gels in dodecane: enhanced network by oscillatory shear. Colloid and Polymer Science, 2012, 290, 151-161.	2.1	16

#	Article	IF	CITATIONS
73	Dynamic Rheological Behavior of HDPE/UHMWPE Blends. Journal of Macromolecular Science - Physics, 2011, 50, 1249-1259.	1.0	26
74	Crystallization behavior of poly (vinylidene fluoride)/multi-walled carbon nanotubes nanocomposites. Journal of Materials Science, 2011, 46, 1542-1550.	3.7	40
75	Enhancement effect of filler network on isotactic polypropylene/carbon black composite melts. Colloid and Polymer Science, 2011, 289, 1673-1681.	2.1	18
76	A dynamic study on nonlinear viscoelastic behavior of isotactic polypropylene/carbon black composite melts. Colloid and Polymer Science, 2011, 289, 1927-1931.	2.1	7
77	Aggregate of nanoparticles: rheological and mechanical properties. Nanoscale Research Letters, 2011, 6, 114.	5.7	30
78	Interfacial interaction of polyvinylidene fluoride/multiwalled carbon nanotubes nanocomposites: A rheological study. Journal of Applied Polymer Science, 2011, 121, 3041-3046.	2.6	17
79	Hyperbranched poly(methyl methacrylate)s prepared by miniemulsion polymerization and their (non)-Newtonian flow behaviors. Polymer, 2011, 52, 376-382.	3.8	7
80	INFLUENCE OF PHASE TRANSITION ON THE FILLER NETWORK IN ISOTACTIC POLYPROPYLENE/CARBON BLACK COMPOSITES. Acta Polymerica Sinica, 2011, 011, 1068-1072.	0.0	0
81	Characteristic Shear Rate for Nonlinear Viscoelastic Behavior in a Polydisperse Polymer Solution. Journal of Macromolecular Science - Physics, 2010, 50, 123-131.	1.0	0
82	Dynamic Rheological Behavior of Copolymerized Linear Low-Density Polyethylenes: Effect of Molecular Weight and Its Distribution. Journal of Macromolecular Science - Physics, 2009, 48, 844-855.	1.0	10
83	Scalable and Heavy Foam Functionalization by Electrodeâ€Inspired Sticky Jammed Fluids for Efficient Inâ€Door Air Quality Management. Energy and Environmental Materials, 0, , .	12.8	1