## Jae-Woo Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7734294/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Hydrolytic degradation of polylactic acid (PLA) and its composites. Renewable and Sustainable Energy<br>Reviews, 2017, 79, 1346-1352.                                                                                    | 8.2  | 555       |
| 2  | Photocatalysts for degradation of dyes in industrial effluents: Opportunities and challenges. Nano Research, 2019, 12, 955-972.                                                                                          | 5.8  | 430       |
| 3  | A comparative review between amines and ammonia as sorptive media for post-combustion CO2 capture. Applied Energy, 2015, 148, 10-22.                                                                                     | 5.1  | 172       |
| 4  | Immobilization of lead in contaminated firing range soil using biochar. Environmental Science and Pollution Research, 2013, 20, 8464-8471.                                                                               | 2.7  | 122       |
| 5  | Graphene and its nanocomposites as a platform for environmental applications. Chemical Engineering<br>Journal, 2017, 315, 210-232.                                                                                       | 6.6  | 108       |
| 6  | Carboxymethyl chitosan-modified magnetic-cored dendrimer as an amphoteric adsorbent. Journal of<br>Hazardous Materials, 2016, 317, 608-616.                                                                              | 6.5  | 100       |
| 7  | Use of waste iron metal for removal of Cr(VI) from water. Chemosphere, 2003, 53, 479-485.                                                                                                                                | 4.2  | 98        |
| 8  | Synthesis and characterization of a heterojunction rGO/ZrO2/Ag3PO4 nanocomposite for degradation of organic contaminants. Journal of Hazardous Materials, 2018, 358, 416-426.                                            | 6.5  | 86        |
| 9  | Partitioning of three nonionic organic compounds between adsorbed surfactants, micelles, and water. Environmental Science & Technology, 1993, 27, 2559-2565.                                                             | 4.6  | 85        |
| 10 | Solubilization of PAH mixtures by three different anionic surfactants. Environmental Pollution, 2002, 118, 307-313.                                                                                                      | 3.7  | 85        |
| 11 | Near-infrared to visible photon transition by upconverting NaYF4: Yb3+, Gd3+, Tm3+@Bi2WO6<br>core@shell composite for bisphenol A degradation in solar light. Applied Catalysis B: Environmental,<br>2019, 243, 438-447. | 10.8 | 81        |
| 12 | Nanomaterials-based treatment options for chromium in aqueous environments. Environment<br>International, 2019, 130, 104748.                                                                                             | 4.8  | 80        |
| 13 | Simultaneous sorption of lead and chlorobenzene by organobentonite. Chemosphere, 2002, 49, 1309-1315.                                                                                                                    | 4.2  | 78        |
| 14 | Waste green sands as reactive media for the removal of zinc from water. Chemosphere, 2004, 56, 571-581.                                                                                                                  | 4.2  | 51        |
| 15 | Nano zero-valent iron impregnated on titanium dioxide nanotube array film for both oxidation<br>andÂreduction of methyl orange. Water Research, 2013, 47, 1858-1866.                                                     | 5.3  | 47        |
| 16 | Effect of molecular structures on the solubility enhancement of hydrophobic organic compounds by environmental amphiphiles. Environmental Toxicology and Chemistry, 2002, 21, 999-1003.                                  | 2.2  | 44        |
| 17 | Sorption and reduction of tetrachloroethylene with zero valent iron and amphiphilic molecules.<br>Chemosphere, 2006, 64, 1047-1052.                                                                                      | 4.2  | 40        |
| 18 | Regeneration of iron for trichloroethylene reduction by Shewanella alga BrY. Chemosphere, 2007, 68,<br>1129-1134.                                                                                                        | 4.2  | 40        |

| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Graphene quantum dots on stainless-steel nanotubes for enhanced photocatalytic degradation of phenanthrene under visible light. Chemosphere, 2020, 246, 125761.                                                 | 4.2  | 40        |
| 20 | Determination of a risk management primer at petroleum-contaminated sites: Developing new human<br>health risk assessment strategy. Journal of Hazardous Materials, 2011, 185, 1374-1380.                       | 6.5  | 39        |
| 21 | Stabilization of lead and copper contaminated firing range soil using calcined oyster shells and fly ash. Environmental Geochemistry and Health, 2013, 35, 705-714.                                             | 1.8  | 38        |
| 22 | Stability and reusability of amine-functionalized magnetic-cored dendrimer for heavy metal adsorption. Journal of Materials Science, 2017, 52, 843-857.                                                         | 1.7  | 36        |
| 23 | A novel total petroleum hydrocarbon fractionation strategy for human health risk assessment for<br>petroleum hydrocarbon-contaminated site management. Journal of Hazardous Materials, 2010, 179,<br>1128-1135. | 6.5  | 35        |
| 24 | Dissolved organic matter effects on the performance of a barrier to polycyclic aromatic hydrocarbon transport by groundwater. Journal of Contaminant Hydrology, 2003, 60, 307-326.                              | 1.6  | 34        |
| 25 | Nano TiO2-functionalized magnetic-cored dendrimer as a photocatalyst. Applied Catalysis B:<br>Environmental, 2014, 147, 973-979.                                                                                | 10.8 | 34        |
| 26 | Selective transport and separation of charge–carriers by an electron transport layer in<br>NiCo2S4/CdO@CC for excellent water splitting. Applied Catalysis B: Environmental, 2020, 265, 118564.                 | 10.8 | 31        |
| 27 | Effect of generation growth on photocatalytic activity of nano TiO 2 -magnetic cored dendrimers.<br>Journal of Industrial and Engineering Chemistry, 2016, 44, 52-59.                                           | 2.9  | 30        |
| 28 | A wind-driven reverse osmosis system for aquaculture wastewater reuse and nutrient recovery.<br>Desalination, 2007, 202, 24-30.                                                                                 | 4.0  | 29        |
| 29 | Iron and organo-bentonite for the reduction and sorption of trichloroethylene. Chemosphere, 2005, 58, 103-108.                                                                                                  | 4.2  | 27        |
| 30 | Competitive adsorption of heavy metals and uranium on soil constituents and microorganism.<br>Geosciences Journal, 2005, 9, 53-61.                                                                              | 0.6  | 26        |
| 31 | Binding of dialkylated disulfonated diphenyl oxide surfactant onto alumina in the aqueous phase.<br>Chemosphere, 1999, 38, 1-12.                                                                                | 4.2  | 25        |
| 32 | Calibration of LEACHN model using LH-OAT sensitivity analysis. Nutrient Cycling in Agroecosystems, 2010, 87, 261-275.                                                                                           | 1.1  | 25        |
| 33 | Aerobic TCE degradation by encapsulated toluene-oxidizing bacteria, Pseudomonas putida and Bacillus<br>spp Water Science and Technology, 2010, 62, 1991-1997.                                                   | 1.2  | 25        |
| 34 | Organobentonite for Sorption and Degradation of Phenol in the Presence of Heavy Metals. Water, Air, and Soil Pollution, 2004, 154, 225-237.                                                                     | 1.1  | 24        |
| 35 | Iron oxide nanotube layer fabricated with electrostatic anodization for heterogeneous Fenton like reaction. Journal of Hazardous Materials, 2014, 273, 1-6.                                                     | 6.5  | 24        |
| 36 | Simulating alveoli-inspired air pockets in a ZnO/NiMoO4/C3N4 catalyst filter for toluene entrapment and photodecomposition. Journal of Hazardous Materials, 2021, 409, 124497.                                  | 6.5  | 23        |

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Combined Effect of Natural Organic Matter and Surfactants on the Apparent Solubility of Polycyclic<br>Aromatic Hydrocarbons. Journal of Environmental Quality, 2002, 31, 275-280.                                        | 1.0 | 21        |
| 38 | Hematite/Graphitic Carbon Nitride Nanofilm for Fenton and Photocatalytic Oxidation of Methylene<br>Blue. Sustainability, 2020, 12, 2866.                                                                                 | 1.6 | 21        |
| 39 | Phenanthrene Removal from Soil Slurries with Surfactant-Treated Oxides. Journal of Environmental Engineering, ASCE, 1995, 121, 430-437.                                                                                  | 0.7 | 20        |
| 40 | EFFECT OF COEXISTING COMPOUNDS ON THE SORPTION AND REDUCTION OF TRICHLOROETHYLENE WITH IRON. Environmental Toxicology and Chemistry, 2005, 24, 11.                                                                       | 2.2 | 20        |
| 41 | IRON MONOSULFIDE AS A SCAVENGER FOR DISSOLVED HEXAVALENT CHROMIUM AND CADMIUM.<br>Environmental Technology (United Kingdom), 2008, 29, 975-983.                                                                          | 1.2 | 19        |
| 42 | Radioactive removal by adsorption on Yesan clay and zeolite. Environmental Earth Sciences, 2013, 68, 2393-2398.                                                                                                          | 1.3 | 19        |
| 43 | Oil Spill Remediation Using Magnetic Separation. Journal of Environmental Engineering, ASCE, 2001, 127, 443-449.                                                                                                         | 0.7 | 18        |
| 44 | Assessment of soil washing for simultaneous removal of heavy metals and low-level petroleum hydrocarbons using various washing solutions. Environmental Earth Sciences, 2016, 75, 1.                                     | 1.3 | 18        |
| 45 | TiO2/CdS nanocomposite stabilized on a magnetic-cored dendrimer for enhanced photocatalytic activity and reusability. Journal of Colloid and Interface Science, 2019, 555, 801-809.                                      | 5.0 | 18        |
| 46 | Addressing the OER/HER imbalance by a redox transition-induced two-way electron injection in a<br>bifunctional n–p–n electrode for excellent water splitting. Journal of Materials Chemistry A, 2020, 8,<br>13218-13230. | 5.2 | 17        |
| 47 | Decontamination of radioactive cesium-contaminated soil/concrete with washing and washing supernatant– critical review. Chemosphere, 2021, 280, 130419.                                                                  | 4.2 | 16        |
| 48 | Partitioning of naphthalene to gemini surfactant-treated alumina. Chemosphere, 2000, 41, 787-792.                                                                                                                        | 4.2 | 15        |
| 49 | Combined Effect of Natural Organic Matter and Surfactants on the Apparent Solubility of Polycyclic Aromatic Hydrocarbons. Journal of Environmental Quality, 2002, 31, 275.                                               | 1.0 | 13        |
| 50 | Sorption of Chlorobiphenyls in Sediment—Water Systems Containing Nonionic Surfactants. Journal<br>of Environmental Quality, 1999, 28, 945-952.                                                                           | 1.0 | 12        |
| 51 | Analogous crystal orientation for immobilizing rGO/ZrO2/Ag3PO4 nanocomposite on a<br>fluorine–doped tin oxide substrate. Journal of Hazardous Materials, 2019, 369, 375-383.                                             | 6.5 | 12        |
| 52 | The role of terminal groups in dendrimer systems for the treatment of organic contaminants in aqueous environments. Journal of Cleaner Production, 2020, 250, 119494.                                                    | 4.6 | 12        |
| 53 | A micelle inhibition model for the bioavailability of polycyclic aromatic hydrocarbons in aquatic systems. Environmental Toxicology and Chemistry, 2002, 21, 2737-2741.                                                  | 2.2 | 11        |
| 54 | Zero Valent Iron and Clay Mixtures for Removal of Trichloroethylene, Chromium(VI), and Nitrate.<br>Environmental Technology (United Kingdom), 2006, 27, 299-306.                                                         | 1.2 | 11        |

| #  | Article                                                                                                                                                                                                                                                    | IF                 | CITATIONS    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|
| 55 | Lorentz force promoted charge separation in a hierarchical, bandgap tuned, and charge reversible<br>NixMn(0.5â^x)O photocatalyst for sulfamethoxazole degradation. Applied Catalysis B: Environmental,<br>2022, 300, 120724.                               | 10.8               | 11           |
| 56 | Reduction of trichloroethylene and nitrate by zero-valent iron with peat. Journal of Environmental<br>Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2008, 43,<br>144-153.                                          | 0.9                | 10           |
| 57 | Numerical investigation for the isolation effect of in situ capping for heavy metals in contaminated sediments. KSCE Journal of Civil Engineering, 2013, 17, 1275-1283.                                                                                    | 0.9                | 10           |
| 58 | Leachate modeling for a municipal solid waste landfill for upper expansion. KSCE Journal of Civil Engineering, 2010, 14, 473-480.                                                                                                                          | 0.9                | 9            |
| 59 | Adsorption of NH4 +-N and E. coli onto Mg2+-modified zeolites. Environmental Earth Sciences, 2016, 75, 1.                                                                                                                                                  | 1.3                | 9            |
| 60 | Titanium-doped stainless steel nanotubes for the photocatalytic degradation of an organic compound. Catalysis Today, 2020, 340, 268-276.                                                                                                                   | 2.2                | 9            |
| 61 | Adsorption of cadmium(II) from aqueous solutions by thiol-functionalized activated carbon. Water<br>Science and Technology: Water Supply, 2011, 11, 61-66.                                                                                                 | 1.0                | 8            |
| 62 | System development and testing of wind-powered reverse osmosis desalination for remote Pacific islands. Water Science and Technology: Water Supply, 2002, 2, 123-129.                                                                                      | 1.0                | 8            |
| 63 | Computational calculation identified optimal binding sites in nano-sized magnetic-cored dendrimer.<br>Chemosphere, 2018, 210, 287-295.                                                                                                                     | 4.2                | 7            |
| 64 | Black Shale as a Sorbent for Trichloroethylene and CR(VI). Environmental Technology (United) Tj ETQq0 0 0 rgB1                                                                                                                                             | - /Overlock<br>1.2 | 10 Tf 50 382 |
| 65 | Effect of phosphate and sediment bacteria on trichloroethylene dechlorination with zero valent<br>iron. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and<br>Environmental Engineering, 2009, 44, 362-369.               | 0.9                | 6            |
| 66 | TCE reduction modeling in soil column: Effect of zero-valent iron, ferrous iron, and iron-reducing bacteria. Desalination and Water Treatment, 2009, 4, 229-232.                                                                                           | 1.0                | 5            |
| 67 | Photocatalytic performance of TiO2 films produced with combination of oxygen-plasma and rapid thermal annealing. Thin Solid Films, 2011, 520, 193-198.                                                                                                     | 0.8                | 5            |
| 68 | Comparison of As, Ni, Zn, Cd, and Pb removals using treatment agents. Environmental Technology<br>(United Kingdom), 2012, 33, 445-454.                                                                                                                     | 1.2                | 5            |
| 69 | Environmental impact assessment using a GSR tool for a landfarming case in South Korea.<br>Environmental Monitoring and Assessment, 2016, 188, 231.                                                                                                        | 1.3                | 4            |
| 70 | A simplified sampling procedure for the estimation of methane emission in rice fields. Environmental<br>Monitoring and Assessment, 2017, 189, 468.                                                                                                         | 1.3                | 4            |
| 71 | Photodegradation of benzene and phenanthrene in aqueous solution using pulsed ultraviolet light.<br>KSCE Journal of Civil Engineering, 2017, 21, 1607-1613.                                                                                                | 0.9                | 4            |
| 72 | Agglomeration of 10 nm amine-functionalized nano-magnetite does not hinder its efficiency as an environmental adsorbent. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2019, 54, 648-656. | 0.9                | 4            |

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Optimal generation number in magnetic-cored dendrimers as Pb(II) and Cd(II) adsorbents.<br>Environmental Technology (United Kingdom), 2020, 41, 3412-3419.                                                         | 1.2 | 4         |
| 74 | Sorption and Biodegradation of Vapor-Phase Organic Compounds with Wastewater Sludge and Food Waste Compost. Journal of the Air and Waste Management Association, 2001, 51, 1237-1244.                              | 0.9 | 3         |
| 75 | Reactive Dechlorination of PCE Using Zero Valent Iron Plus Surfactants. ACS Symposium Series, 2002, ,<br>141-153.                                                                                                  | 0.5 | 3         |
| 76 | Recovery of iron reactivity for removal of Cr(VI) using iron-reducing consortium. KSCE Journal of<br>Civil Engineering, 2006, 10, 175-180.                                                                         | 0.9 | 3         |
| 77 | Impacts of environmental conditions on the sorption of volatile organic compounds onto tire powder. Journal of Hazardous Materials, 2008, 153, 157-163.                                                            | 6.5 | 3         |
| 78 | Fabrication of zero valent iron (ZVI) nanotube film via potentiostatic anodization and electroreduction. Water Science and Technology, 2009, 59, 2503-2507.                                                        | 1.2 | 3         |
| 79 | Transformation impacts of dissolved and solid phase Fe(II) on trichloroethylene (TCE) reduction in an iron-reducing bacteria (IRB) mixed column system: A mathematical model. Water Research, 2012, 46, 6391-6398. | 5.3 | 3         |
| 80 | Loss assessment of building and contents damage from the potential earthquake risk in Seoul, South<br>Korea. Natural Hazards and Earth System Sciences, 2019, 19, 985-997.                                         | 1.5 | 3         |
| 81 | Effects of carbonation on carbon dioxide capture and the mechanical properties of concrete with amine sorbents. Advances in Cement Research, 2020, 32, 502-509.                                                    | 0.7 | 3         |
| 82 | Contribution of Different Quantities of Leaf Litter to Nitrous Oxide Emission from a Temperate<br>Deciduous Forest. KSCE Journal of Civil Engineering, 2021, 25, 1163-1175.                                        | 0.9 | 3         |
| 83 | UV Spectroscopic Monitoring of Vaporized Monoaromatic Hydrocarbons from<br>Petroleum-Contaminated Soils. Environmental Monitoring and Assessment, 2006, 120, 527-536.                                              | 1.3 | 2         |
| 84 | Numerical investigation of the gel barrier formation with vertical injection pipe. Environmental Geology, 2007, 53, 635-642.                                                                                       | 1.2 | 2         |
| 85 | Enhanced Heavy Metal Sorption by Surface-Oxidized Activated Carbon Does Not Affect the PAH Sequestration in Sediments. Water, Air, and Soil Pollution, 2012, 223, 3195-3206.                                       | 1.1 | 2         |
| 86 | Eisenia fetida growth inhibition by amended activated carbon causes less bioaccumulation of heavy metals. Journal of Soils and Sediments, 2014, 14, 1766-1773.                                                     | 1.5 | 2         |
| 87 | An Environmental Impact Assessment Model with Monetary Valuation for Remediation in South Korea.<br>KSCE Journal of Civil Engineering, 2019, 23, 4168-4173.                                                        | 0.9 | 2         |
| 88 | WASTE LEAVES AS REACTIVE MEDIA IN PERMEABLE REACTIVE BARRIERS FOR CR(VI) REMOVAL. Environmental Engineering Research, 2005, 10, 1-6.                                                                               | 1.5 | 2         |
| 89 | Quantitative Comparison of the Photocatalytic Efficiency of TiO2Nanotube Film and TiO2Powder.<br>Journal of Soil and Groundwater Environment, 2016, 21, 8-14.                                                      | 0.1 | 2         |
| 90 | Zero-valent Iron and Organo-clay for Chromate Removal in the Presence of Trichloroethylene. , 2006, , 35-46.                                                                                                       |     | 0         |