Nils Y Lycke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7734115/publications.pdf Version: 2024-02-01

NUSYLVCKE

#	Article	IF	CITATIONS
1	Recent progress in mucosal vaccine development: potential and limitations. Nature Reviews Immunology, 2012, 12, 592-605.	22.7	627
2	Cholera toxin and cholera B subunit as oral—mucosal adjuvant and antigen vector systems. Vaccine, 1993, 11, 1179-1184.	3.8	314
3	The adjuvant effect ofVibrio cholerae andEscherichia coli heat-labile enterotoxins is linked to their ADP-ribosyltransferase activity. European Journal of Immunology, 1992, 22, 2277-2281.	2.9	302
4	Protection Against <i>Helicobacter pylori</i> Infection Following Immunization Is IL-12-Dependent and Mediated by Th1 Cells. Journal of Immunology, 2002, 169, 6977-6984.	0.8	202
5	Mucosal Immunity: Implications for Vaccine Development. Immunobiology, 1992, 184, 157-179.	1.9	168
6	The regulation of gut mucosal IgA B-cell responses: recent developments. Mucosal Immunology, 2017, 10, 1361-1374.	6.0	145
7	Isolation of Mouse Small Intestinal Intraepithelial Lymphocytes, Peyer's Patch, and Lamina Propria Cells. , 2001, Chapter 3, Unit 3.19.		138
8	Gut IgA Class Switch Recombination in the Absence of CD40 Does Not Occur in the Lamina Propria and Is Independent of Germinal Centers. Journal of Immunology, 2006, 177, 7772-7783.	0.8	138
9	Cholera toxin adjuvant greatly promotes antigen priming of T cells. European Journal of Immunology, 1993, 23, 2136-2143.	2.9	127
10	The Cholera Toxin-Derived CTA1-DD Vaccine Adjuvant Administered Intranasally Does Not Cause Inflammation or Accumulate in the Nervous Tissues. Journal of Immunology, 2004, 173, 3310-3319.	0.8	121
11	CTA1-M2e-DD: A novel mucosal adjuvant targeted influenza vaccine. Vaccine, 2008, 26, 1243-1252.	3.8	120
12	Improved design and intranasal delivery of an M2e-based human influenza A vaccine. Vaccine, 2006, 24, 6597-6601.	3.8	116
13	The universal influenza vaccine M2e-HBc administered intranasally in combination with the adjuvant CTA1-DD provides complete protection. Vaccine, 2006, 24, 544-551.	3.8	113
14	T Cell-Independent IgA Class Switch Recombination Is Restricted to the GALT and Occurs Prior to Manifest Germinal Center Formation. Journal of Immunology, 2010, 184, 3545-3553.	0.8	111
15	Lack of J chain inhibits the transport of gut IgA and abrogates the development of intestinal antitoxic protection. Journal of Immunology, 1999, 163, 913-9.	0.8	105
16	<i>Helicobacter pylori</i> -Specific Antibodies Impair the Development of Gastritis, Facilitate Bacterial Colonization, and Counteract Resistance against Infection. Journal of Immunology, 2004, 172, 5024-5033.	0.8	99
17	Re-utilization of germinal centers in multiple Peyer's patches results in highly synchronized, oligoclonal, and affinity-matured gut IgA responses. Mucosal Immunology, 2013, 6, 122-135.	6.0	84
18	Mucosal Vaccine Development Based on Liposome Technology. Journal of Immunology Research, 2016, 2016, 1-16.	2.2	84

#	Article	IF	CITATIONS
19	M2e-tetramer-specific memory CD4 T cells are broadly protective against influenza infection. Mucosal Immunology, 2018, 11, 273-289.	6.0	81
20	Induction of gut IgA production through T cellâ€dependent and T cellâ€independent pathways. Annals of the New York Academy of Sciences, 2012, 1247, 97-116.	3.8	80
21	A Unique Population of Extrathymically Derived αβTCR+CD4â^'CD8â^' T Cells with Regulatory Functions Dominates the Mouse Female Genital Tract. Journal of Immunology, 2003, 170, 1659-1666.	0.8	77
22	The Combined CTA1-DD/ISCOMs Vector Is an Effective Intranasal Adjuvant for Boosting Prior Mycobacterium bovis BCG Immunity to Mycobacterium tuberculosis. Infection and Immunity, 2007, 75, 408-416.	2.2	76
23	Limited clonal relatedness between gut IgA plasma cells and memory B cells after oral immunization. Nature Communications, 2016, 7, 12698.	12.8	73
24	Mucosal adjuvants and long-term memory development with special focus on CTA1-DD and other ADP-ribosylating toxins. Mucosal Immunology, 2010, 3, 556-566.	6.0	69
25	Interferon-λ enhances adaptive mucosal immunity by boosting release of thymic stromal lymphopoietin. Nature Immunology, 2019, 20, 593-601.	14.5	68
26	Single-cell BCR and transcriptome analysis after influenza infection reveals spatiotemporal dynamics of antigen-specific B cells. Cell Reports, 2021, 35, 109286.	6.4	67
27	CTA1-DD-Immune Stimulating Complexes: a Novel, Rationally Designed Combined Mucosal Vaccine Adjuvant Effective with Nanogram Doses of Antigen. Journal of Immunology, 2001, 167, 3398-3405.	0.8	66
28	The role of Peyer's patches in synchronizing gut IgA responses. Frontiers in Immunology, 2012, 3, 329.	4.8	62
29	Immunology of the human genital tract. Current Opinion in Infectious Diseases, 2003, 16, 43-49.	3.1	61
30	Vaccine-Induced Immunity against <i>Helicobacter pylori</i> Infection Is Impaired in IL-18-Deficient Mice. Journal of Immunology, 2004, 173, 3348-3356.	0.8	61
31	The ADP-Ribosylating CTA1-DD Adjuvant Enhances T Cell-Dependent and Independent Responses by Direct Action on B Cells Involving Anti-Apoptotic Bcl-2- and Germinal Center-Promoting Effects. Journal of Immunology, 2000, 164, 6276-6286.	0.8	58
32	The level of protection against rotavirus shedding in mice following immunization with a chimeric VP6 protein is dependent on the route and the coadministered adjuvant. Vaccine, 2002, 20, 1733-1740.	3.8	56
33	From toxin to adjuvant: the rational design of a vaccine adjuvant vector, CTA1-DD/ISCOM. Cellular Microbiology, 2004, 6, 23-32.	2.1	56
34	The Combined CTA1-DD/ISCOM Adjuvant Vector Promotes Priming of Mucosal and Systemic Immunity to Incorporated Antigens by Specific Targeting of B Cells. Journal of Immunology, 2006, 176, 3697-3706.	0.8	56
35	The Female Lower Genital Tract Is a Privileged Compartment with IL-10 Producing Dendritic Cells and Poor Th1 Immunity following Chlamydia trachomatis Infection. PLoS Pathogens, 2010, 6, e1001179.	4.7	56
36	Activated Peyer′s patch B cells sample antigen directly from M cells in the subepithelial dome. Nature Communications, 2019, 10, 2423.	12.8	55

#	Article	IF	CITATIONS
37	Oral vaccination with immune stimulating complexes. Immunology Letters, 1999, 65, 133-140.	2.5	54
38	Cholera toxin adjuvant promotes a balanced Th1/Th2/Th17 response independently of IL-12 and IL-17 by acting on Gsα in CD11b+ DCs. Mucosal Immunology, 2015, 8, 815-827.	6.0	54
39	Recombinant cholera toxin B subunit is not an effective mucosal adjuvant for oral imm_unization of mice against Helicobacter felis. Immunology, 1998, 94, 22-27.	4.4	52
40	Human and rodent interferon-γ as a growth factor forTrypanosoma brucei. European Journal of Immunology, 1996, 26, 1359-1364.	2.9	51
41	Strong Differential Regulation of Serum and Mucosal IgA Responses as Revealed in CD28-Deficient Mice Using Cholera Toxin Adjuvant. Journal of Immunology, 2003, 170, 55-63.	0.8	51
42	lgA Antibodies Impair Resistance against <i>Helicobacter pylori</i> Infection: Studies on Immune Evasion in IL-10-Deficient Mice. Journal of Immunology, 2005, 174, 8144-8153.	0.8	51
43	ADP-ribosylating enterotoxins as vaccine adjuvants. Current Opinion in Pharmacology, 2018, 41, 42-51.	3.5	50
44	A novel non-toxic combined CTA1-DD and ISCOMS adjuvant vector for effective mucosal immunization against influenza virus. Vaccine, 2011, 29, 3951-3961.	3.8	49
45	Cutting Edge: Retinoic Acid Signaling in B Cells Is Essential for Oral Immunization and Microflora Composition. Journal of Immunology, 2015, 195, 1368-1371.	0.8	49
46	The mucosal adjuvant effects of cholera toxin and immune-stimulating complexes differ in their requirement for IL-12, indicating different pathways of action. European Journal of Immunology, 1999, 29, 1774-1784.	2.9	48
47	CTA1-DD adjuvant promotes strong immunity against human immunodeficiency virus type 1 envelope glycoproteins following mucosal immunization. Journal of General Virology, 2008, 89, 2954-2964.	2.9	47
48	A Unique Role of the Cholera Toxin A1-DD Adjuvant for Long-Term Plasma and Memory B Cell Development. Journal of Immunology, 2011, 186, 1399-1410.	0.8	46
49	Targeted Vaccine Adjuvants Based on Modified Cholera Toxin. Current Molecular Medicine, 2005, 5, 591-597.	1.3	44
50	Intrarectal immunization of mice with VP6 and either LT(R192G) or CTA1-DD as adjuvant protects against fecal rotavirus shedding after EDIM challenge. Vaccine, 2007, 25, 6224-6231.	3.8	41
51	Differential CD28 and Inducible Costimulatory Molecule Signaling Requirements for Protective CD4 ⁺ T-Cell-Mediated Immunity against Genital Tract <i>Chlamydia trachomatis</i> Infection. Infection and Immunity, 2007, 75, 4638-4647.	2.2	40
52	Immunization with a MOMP-Based Vaccine Protects Mice against a Pulmonary Chlamydia Challenge and Identifies a Disconnection between Infection and Pathology. PLoS ONE, 2013, 8, e61962.	2.5	40
53	IgA Isotype Restriction in the Mucosal but Not in the Extramucosal Immune Response after Oral Immunizations with Cholera Toxin or Cholera B Subunit. International Archives of Allergy and Immunology, 1983, 72, 119-127.	2.1	39
54	A novel concept in mucosal adjuvanticity: The CTA1-DD adjuvant is a B cell-targeted fusion protein that incorporates the enzymatically active cholera toxin A1 subunit. Immunology and Cell Biology, 1998, 76, 280-287.	2.3	38

#	Article	IF	CITATIONS
55	CTA1-DD is an effective adjuvant for targeting anti-chlamydial immunity to the murine genital mucosa. Journal of Reproductive Immunology, 2009, 81, 34-38.	1.9	38
56	Antibioticâ€Killed <i>Staphylococcus aureus</i> Induces Destructive Arthritis in Mice. Arthritis and Rheumatology, 2015, 67, 107-116.	5.6	38
57	Serial ultrasonography, hormonal profile and antisperm antibody response after testicular sperm aspiration. Human Reproduction, 2001, 16, 2621-2627.	0.9	37
58	Mucosal immunization of piglets with purified F18 fimbriae does not protect against F18+ Escherichia coli infection. Veterinary Immunology and Immunopathology, 2007, 120, 69-79.	1.2	37
59	Complement Activation and Complement Receptors on Follicular Dendritic Cells Are Critical for the Function of a Targeted Adjuvant. Journal of Immunology, 2011, 187, 3641-3652.	0.8	36
60	The Nontoxic CTA1-DD Adjuvant Enhances Protective Immunity Against Helicobacter pylori Infection Following Mucosal Immunization. Scandinavian Journal of Immunology, 2006, 63, 97-105.	2.7	35
61	T and B cell responses to chimeric proteins containing heterologous T helper epitopes inserted at different positions. Molecular Immunology, 1992, 29, 1185-1190.	2.2	34
62	Immunological memory in B-cell-deficient mice conveys long-lasting protection against genital tract infection with Chlamydia trachomatis by rapid recruitment of T cells. Immunology, 2001, 102, 199-208.	4.4	34
63	Mice with an inactivated joining chain locus have perturbed IgM secretion. European Journal of Immunology, 1998, 28, 2355-2365.	2.9	33
64	From toxin to adjuvant: basic mechanisms for the control of mucosal IgA immunity and tolerance. Immunology Letters, 2005, 97, 193-198.	2.5	33
65	Immunity against a <i>Chlamydia</i> infection and disease may be determined by a balance of ILâ€17 signaling. Immunology and Cell Biology, 2014, 92, 287-297.	2.3	33
66	CD19-deficient mice exhibit poor responsiveness to oral immunization despite evidence of unaltered total IgA levels, germinal centers and IgA-isotype switching in Peyer's patches. European Journal of Immunology, 2000, 30, 1861-1871.	2.9	31
67	CD4 ⁺ Tâ€cell immunity in the female genital tract is critically dependent on local mucosal immunization. European Journal of Immunology, 2011, 41, 2642-2653.	2.9	30
68	Splenic Marginal Zone Dendritic Cells Mediate the Cholera Toxin Adjuvant Effect: Dependence on the ADP-Ribosyltransferase Activity of the Holotoxin. Journal of Immunology, 2005, 175, 5192-5202.	0.8	25
69	Porous Nanoparticles With Self-Adjuvanting M2e-Fusion Protein and Recombinant Hemagglutinin Provide Strong and Broadly Protective Immunity Against Influenza Virus Infections. Frontiers in Immunology, 2018, 9, 2060.	4.8	25
70	Type I and Type III Interferons Differ in Their Adjuvant Activities for Influenza Vaccines. Journal of Virology, 2019, 93, .	3.4	25
71	Mast Cells Contribute to the Mucosal Adjuvant Effect of CTA1–DD after IgG-Complex Formation. Journal of Immunology, 2010, 185, 2935-2941.	0.8	24
72	ADP-Ribosylating Bacterial Enzymes for the Targeted Control of Mucosal Tolerance and Immunity. Annals of the New York Academy of Sciences, 2004, 1029, 193-208.	3.8	22

#	Article	IF	CITATIONS
73	A vaccine combination of lipid nanoparticles and a cholera toxin adjuvant derivative greatly improves lung protection against influenza virus infection. Mucosal Immunology, 2021, 14, 523-536.	6.0	22
74	Role of CTA1R7K OLâ€DD as a novel therapeutic mucosal tolerance–inducing vector for treatment of collagenâ€induced arthritis. Arthritis and Rheumatism, 2009, 60, 1672-1682.	6.7	21
75	Subcomponent Vaccine Based on CTA1-DD Adjuvant with Incorporated UreB Class II Peptides Stimulates Protective Helicobacter pylori Immunity. PLoS ONE, 2013, 8, e83321.	2.5	21
76	The CTA1-DD vaccine adjuvant binds to human B cells and potentiates their T cell stimulating ability. Vaccine, 2003, 22, 185-193.	3.8	20
77	Blockade of the B7-CD28 Pathway by CTLA4-Ig Counteracts Rejection and Prolongs Survival in Small Bowel Transplantation. Scandinavian Journal of Immunology, 2000, 51, 224-230.	2.7	18
78	Multistage vaccines containing outer membrane, type III secretion system and inclusion membrane proteins protects against a Chlamydia genital tract infection and pathology. Vaccine, 2017, 35, 3883-3888.	3.8	18
79	Hydrophobicity engineering of cholera toxin A1 subunit in the strong adjuvant fusion protein CTA1-DD. Protein Engineering, Design and Selection, 1999, 12, 173-178.	2.1	17
80	The B cell targeted adjuvant, CTA1-DD, exhibits potent mucosal immunoenhancing activity despite pre-existing anti-toxin immunity. Vaccine, 2001, 19, 2542-2548.	3.8	17
81	Facial nerve lesion response; strain differences but no involvement of IFN-γ, STAT4 or STAT6. NeuroReport, 2002, 13, 1589-1593.	1.2	17
82	IgA B Cell Development. , 2005, , 583-616.		17
83	Clonotypic analysis of protective influenza M2e-specific lung resident Th17 memory cells reveals extensive functional diversity. Mucosal Immunology, 2022, 15, 717-729.	6.0	17
84	Fusion Proteins with Heterologous T Helper Epitopes. Recombinant E. coli Heat-Stable Enterotoxin Proteins. International Reviews of Immunology, 1994, 11, 103-111.	3.3	15
85	Differential activation requirements of isotype-switched B cells. European Journal of Immunology, 1996, 26, 1926-1934.	2.9	15
86	Feeding transgenic plants that express a tolerogenic fusion protein effectively protects against arthritis. Plant Biotechnology Journal, 2016, 14, 1106-1115.	8.3	15
87	Class-switch recombination to IgA in the Peyer's patches requires natural thymus-derived Tregs and appears to be antigen independent. Mucosal Immunology, 2019, 12, 1268-1279.	6.0	15
88	The CTA1-DD adjuvant strongly potentiates follicular dendritic cell function and germinal center formation, which results in improved neonatal immunization. Mucosal Immunology, 2020, 13, 545-557.	6.0	15
89	Cross-Protective Potential and Protection-Relevant Immune Mechanisms of Whole Inactivated Influenza Virus Vaccines Are Determined by Adjuvants and Route of Immunization. Frontiers in Immunology, 2019, 10, 646.	4.8	14
90	Laser-Doppler flowmetry is reliable for early diagnosis of small-bowel acute rejection in the mouse. Microsurgery, 2003, 23, 233-238.	1.3	11

#	Article	IF	CITATIONS
91	Molecular effects of cholera toxin on isotype differentiation. Immunologic Research, 1991, 10, 407-412.	2.9	10
92	Measurement of Immunoglobulin Synthesis Using the ELISPOT Assay. , 2001, Chapter 7, Unit 7.14.		10
93	Mechanisms of Adjuvant Action. , 0, , 53-79.		10
94	Histo-blood group antigens of glycosphingolipids predict susceptibility of human intestinal enteroids to norovirus infection. Journal of Biological Chemistry, 2020, 295, 15974-15987.	3.4	10
95	Delayed type hypersensitivity-associated cytokines in islet xenotransplantation: limited efficacy of interleukin-2- and tumor necrosis factor-α-blockade in interferon-γ receptor-deficient mice. Xenotransplantation, 2000, 7, 206-213.	2.8	9
96	ADP-Ribosylation Controls the Outcome of Tolerance or Enhanced Priming Following Mucosal Immunization. Journal of Immunology, 2010, 184, 2776-2784.	0.8	9
97	A Molecular Approach to the Construction of an Effective Mucosal Vaccine Adjuvant. , 1996, , 563-580.		8
98	Gel Phase 1,2-Distearoyl-sn-glycero-3-phosphocholine-Based Liposomes Are Superior to Fluid Phase Liposomes at Augmenting Both Antigen Presentation on Major Histocompatibility Complex Class II and Costimulatory Molecule Display by Dendritic Cells in Vitro. ACS Infectious Diseases, 2019, 5, 1867-1878.	3.8	7
99	Prevention of influenza virus infection and transmission by intranasal administration of a porous maltodextrin nanoparticle-formulated vaccine. International Journal of Pharmaceutics, 2020, 582, 119348.	5.2	7
100	Peyer's patch T _H 17 cells are dispensable for gut IgA responses to oral immunization. Science Immunology, 2022, 7, .	11.9	7
101	Is the choice of vaccine adjuvant critical for long-term memory development?. Expert Review of Vaccines, 2010, 9, 1357-1361.	4.4	6
102	Protection against genital tract <i>Chlamydia trachomatis</i> infection following intranasal immunization with a novel recombinant <scp>MOMP VS</scp> 2/4 antigen. Apmis, 2016, 124, 1078-1086.	2.0	6
103	Type II NKT Cell Agonist, Sulfatide, Is an Effective Adjuvant for Oral Heat-Killed Cholera Vaccines. Vaccines, 2021, 9, 619.	4.4	6
104	ADP-ribosylating adjuvant reveals plasticity in cDC1 cells that drive mucosal Th17 cell development and protection against influenza virus infection. Mucosal Immunology, 2022, 15, 745-761.	6.0	6
105	ELISPOT Assay for Measurement of Antigenâ€Specific and Polyclonal Antibody Responses. Current Protocols in Immunology, 2015, 108, 7.14.1-7.14.10.	3.6	5
106	Interferon-λ Improves the Efficacy of Intranasally or Rectally Administered Influenza Subunit Vaccines by a Thymic Stromal Lymphopoietin-Dependent Mechanism. Frontiers in Immunology, 2021, 12, 749325.	4.8	5
107	Migration of host and donor T cells in small bowel transplantation. Transplant International, 1996, 10, 45-50.	1.6	4
108	Migration of host and donor T cells in small bowel transplantation. Transplant International, 1997, 10, 45-50.	1.6	4

#	Article	IF	CITATIONS
109	IgA B Cell Responses to Gut Mucosal Antigens: Do We Know it all?. Frontiers in Immunology, 2013, 4, 368.	4.8	1
110	Mucosal B Cell Differentiation and Regulation. , 2015, , 701-719.		1
111	Analysis of the Second Messenger Systems Involved in the Synergistic Effect of Cholera Toxin and Interleukin-4 on B Cell Isotype-Switching. Advances in Experimental Medicine and Biology, 1995, 371A, 15-20.	1.6	1
112	Induction and Regulation of Mucosal Memory B Cell Responses. , 2020, , 117-131.		0
113	Gene expression profiling identifies STAT3―as a novel pathway for immunomodulation by cholera toxin adjuvant. FASEB Journal, 2008, 22, 853.3.	0.5	0
114	Immunity Against Chlamydia trachomatis. , 2008, , 433-457.		0