Jari Haapala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7734050/publications.pdf

Version: 2024-02-01

393982 395343 1,510 33 19 33 citations h-index g-index papers 34 34 34 2215 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Natural hazards and extreme events in the Baltic Sea region. Earth System Dynamics, 2022, 13, 251-301.	2.7	35
2	Overview of the MOSAiC expedition: Snow and sea ice. Elementa, 2022, 10, .	1.1	91
3	Climate change in the Baltic Sea region: a summary. Earth System Dynamics, 2022, 13, 457-593.	2.7	75
4	Seasonality and timing of sea ice mass balance and heat fluxes in the Arctic transpolar drift during 2019 \hat{a} €"2020. Elementa, 2022, 10, .	1.1	21
5	Coupled regional Earth system modeling in the Baltic Sea region. Earth System Dynamics, 2021, 12, 939-973.	2.7	13
6	Satellite Observations for Detecting and Forecasting Sea-Ice Conditions: A Summary of Advances Made in the SPICES Project by the EU's Horizon 2020 Programme. Remote Sensing, 2020, 12, 1214.	1.8	16
7	The MOSAiC ice floe: sediment-laden survivor from the Siberian shelf. Cryosphere, 2020, 14, 2173-2187.	1.5	59
8	Winter storms accelerate the demise of sea ice in the Atlantic sector of the Arctic Ocean. Scientific Reports, 2019, 9, 9222.	1.6	60
9	Nemo-Nordic 1.0: a NEMO-based ocean model for the Baltic and North seas – research and operational applications. Geoscientific Model Development, 2019, 12, 363-386.	1.3	73
10	A Distributed Snowâ€Evolution Model for Seaâ€ice Applications (SnowModel). Journal of Geophysical Research: Oceans, 2018, 123, 3786-3810.	1.0	47
11	Interannual sea ice thickness variability in the Bay of Bothnia. Cryosphere, 2018, 12, 3459-3476.	1.5	16
12	Thin ice and storms: Sea ice deformation from buoy arrays deployed during <scp>Nâ€ICE</scp> 2015. Journal of Geophysical Research: Oceans, 2017, 122, 4661-4674.	1.0	88
13	Smallâ€scale sea ice deformation during <scp>Nâ€lCE</scp> 2015: From compact pack ice to marginal ice zone. Journal of Geophysical Research: Oceans, 2017, 122, 5105-5120.	1.0	39
14	Sea-ice evaluation of NEMO-Nordic 1.0: a NEMO–LIM3.6-based ocean–sea-ice model setup for the North Sea and Baltic Sea. Geoscientific Model Development, 2017, 10, 3105-3123.	1.3	39
15	Sea ice drift and deformation in the coastal boundary zone. Geophysical Research Letters, 2016, 43, 10,303-10,310.	1.5	12
16	Atmospheric and oceanic conditions and the extremely low Bothnian Bay sea ice extent in 2014/2015. Geophysical Research Letters, 2015, 42, 7740-7749.	1.5	20
17	Small-scale horizontal variability of snow, sea-ice thickness and freeboard in the first-year ice region north of Svalbard. Annals of Glaciology, 2013, 54, 261-266.	2.8	18
18	Ice structures, patterns, and processes: A view across the icefields. Reviews of Modern Physics, 2012, 84, 885-944.	16.4	277

#	Article	IF	CITATIONS
19	Low-frequency bursts of horizontally polarized waves in the Arctic sea-ice cover. Journal of Glaciology, 2011, 57, 231-237.	1.1	20
20	Comparison of seasonal sea-ice thickness change in the Transpolar Drift observed by local ice mass-balance observations and floe-scale EM surveys. Annals of Glaciology, 2011, 52, 97-102.	2.8	19
21	Melt pond formation and temporal evolution at the drifting station Tara during summer 2007. Polar Research, 2010, 29, 311-321.	1.6	30
22	Seasonality of spectral albedo and transmittance as observed in the Arctic Transpolar Drift in 2007. Journal of Geophysical Research, 2010, 115 , .	3.3	92
23	Modelling ice conditions in the easternmost Gulf of Finland in the Baltic Sea. Continental Shelf Research, 2010, 30, 1458-1471.	0.9	7
24	A dynamic Biologically Active Layer for numerical studies of the sea ice ecosystem. Ocean Modelling, 2010, 35, 89-104.	1.0	41
25	A method for observing compression in sea ice fields using IceCam. Cold Regions Science and Technology, 2009, 59, 65-77.	1.6	8
26	Geophysics of sea ice in the Baltic Sea: A review. Progress in Oceanography, 2009, 80, 129-148.	1.5	87
27	Exploring Arctic Transpolar Drift During Dramatic Sea Ice Retreat. Eos, 2008, 89, 21-22.	0.1	94
28	Sea-ice kinematics measured with GPS drifters. Annals of Glaciology, 2001, 33, 151-156.	2.8	12
29	Modelling the variability of the sea-ice conditions in the Baltic Sea under different climate conditions. Annals of Glaciology, 2001, 33, 555-559.	2.8	3
30	On the modelling of ice-thickness redistribution. Journal of Glaciology, 2000, 46, 427-437.	1.1	38
31	Comparisons of Sea-Ice Velocity Fields from ERS-1 SAR and a dynamic model. Journal of Glaciology, 1998, 44, 248-262.	1.1	5
32	An airborne electromagnetic system on a fixed wing aircraft for sea ice thickness mapping. Cold Regions Science and Technology, 1996, 24, 355-373.	1.6	35
33	Simulating the Baltic Sea ice season with a coupled ice-ocean model. Tellus, Series A: Dynamic Meteorology and Oceanography, 1996, 48, 622-643.	0.8	20