Andreas Reisch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7733757/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fluorescent Polymer Nanoparticles Based on Dyes: Seeking Brighter Tools for Bioimaging. Small, 2016, 12, 1968-1992.	10.0	487
2	Collective fluorescence switching of counterion-assembled dyes in polymer nanoparticles. Nature Communications, 2014, 5, 4089.	12.8	161
3	Giant light-harvesting nanoantenna for single-molecule detection in ambient light. Nature Photonics, 2017, 11, 657-663.	31.4	133
4	Charge-Controlled Nanoprecipitation as a Modular Approach to Ultrasmall Polymer Nanocarriers: Making Bright and Stable Nanoparticles. ACS Nano, 2015, 9, 5104-5116.	14.6	107
5	Fluorescent Polymer Nanoparticles for Cell Barcoding In Vitro and In Vivo. Small, 2017, 13, 1701582.	10.0	95
6	Fighting Aggregation aused Quenching and Leakage of Dyes in Fluorescent Polymer Nanoparticles: Universal Role of Counterion. Chemistry - an Asian Journal, 2019, 14, 836-846.	3.3	92
7	Lightâ€Harvesting Nanoparticle Probes for FRETâ€Based Detection of Oligonucleotides with Singleâ€Molecule Sensitivity. Angewandte Chemie - International Edition, 2020, 59, 6811-6818.	13.8	75
8	Fluorinated counterion-enhanced emission of rhodamine aggregates: ultrabright nanoparticles for bioimaging and light-harvesting. Nanoscale, 2015, 7, 18198-18210.	5.6	74
9	Tuning the color and photostability of perylene diimides inside polymer nanoparticles: towards biodegradable substitutes of quantum dots. Nanoscale, 2014, 6, 12934-12942.	5.6	69
10	Tailoring Fluorescence Brightness and Switching of Nanoparticles through Dye Organization in the Polymer Matrix. ACS Applied Materials & amp; Interfaces, 2017, 9, 43030-43042.	8.0	61
11	Ultrabright Fluorescent Polymeric Nanoparticles with a Stealth Pluronic Shell for Live Tracking in the Mouse Brain. ACS Nano, 2020, 14, 9755-9770.	14.6	48
12	Proteinâ€Sized Bright Fluorogenic Nanoparticles Based on Crossâ€Linked Calixarene Micelles with Cyanine Corona. Angewandte Chemie - International Edition, 2016, 55, 15884-15888.	13.8	45
13	Protein‣ized Dye‣oaded Polymer Nanoparticles for Free Particle Diffusion in Cytosol. Advanced Functional Materials, 2018, 28, 1805157.	14.9	44
14	BODIPY-loaded polymer nanoparticles: chemical structure of cargo defines leakage from nanocarrier in living cells. Journal of Materials Chemistry B, 2019, 7, 5199-5210.	5.8	43
15	Lanthanide-Complex-Loaded Polymer Nanoparticles for Background-Free Single-Particle and Live-Cell Imaging. Chemistry of Materials, 2019, 31, 4034-4041.	6.7	37
16	Controlling Size and Fluorescence of Dye-Loaded Polymer Nanoparticles through Polymer Design. Langmuir, 2019, 35, 7009-7017.	3.5	31
17	Enzyme-free amplified detection of cellular microRNA by light-harvesting fluorescent nanoparticle probes. Biosensors and Bioelectronics, 2021, 179, 113084.	10.1	29
18	Lightâ€Harvesting Nanoparticle Probes for FRETâ€Based Detection of Oligonucleotides with Singleâ€Molecule Sensitivity. Angewandte Chemie, 2020, 132, 6878-6885.	2.0	21

ANDREAS REISCH

#	Article	IF	CITATIONS
19	An aluminium-based fluorinated counterion for enhanced encapsulation and emission of dyes in biodegradable polymer nanoparticles. Materials Chemistry Frontiers, 2017, 1, 2309-2316.	5.9	19
20	Microcavity-Enhanced Fluorescence Energy Transfer from Quantum Dot Excited Whispering Gallery Modes to Acceptor Dye Nanoparticles. ACS Nano, 2021, 15, 1445-1453.	14.6	19
21	Zwitterionic Stealth Dye-Loaded Polymer Nanoparticles for Intracellular Imaging. ACS Applied Materials & Interfaces, 2020, 12, 117-125.	8.0	18
22	Sizeâ€Dependent Electroporation of Dye‣oaded Polymer Nanoparticles for Efficient and Safe Intracellular Delivery. Small Methods, 2021, 5, e2000947.	8.6	14
23	Amplified Fluorescence <i>in Situ</i> Hybridization by Small and Bright Dye-Loaded Polymeric Nanoparticles. ACS Nano, 2022, 16, 1381-1394.	14.6	11
24	Lanthanideâ€based bulky counterions against aggregationâ€caused quenching of dyes in fluorescent polymeric nanoparticles. Aggregate, 2022, 3, e130.	9.9	10
25	Counterion-insulated near-infrared dyes in biodegradable polymer nanoparticles for <i>in vivo</i> imaging. Nanoscale Advances, 2021, 4, 39-48.	4.6	10
26	Assembly of Fluorescent Polymer Nanoparticles Using Different Microfluidic Mixers. Langmuir, 2022, 38, 7945-7955.	3.5	9
27	Bulky Barbiturates as Nonâ€Toxic Ionic Dye Insulators for Enhanced Emission in Polymeric Nanoparticles. Chemistry - A European Journal, 2021, 27, 12877-12883.	3.3	6
28	Protein-like particles through nanoprecipitation of mixtures of polymers of opposite charge. Journal of Colloid and Interface Science, 2022, 607, 1786-1795.	9.4	5
29	Dynamic tracing using ultra-bright labeling and multi-photon microscopy identifies endothelial uptake of poloxamer 188 coated poly(lactic-co-glycolic acid) nano-carriers in vivo. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 40, 102511.	3.3	5