

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7733701/publications.pdf Version: 2024-02-01

BAOLI

#	Article	IF	CITATIONS
1	A highly active oxygen evolution electrocatalyst derived from Co/Ni-succinic acid framework under mild conditions. CrystEngComm, 2022, 24, 1453-1458.	1.3	1
2	<i>In situ</i> preparation of a Co ₄ S ₃ -based electrocatalyst by taking advantage of the controllable components of metal–organic frameworks. Dalton Transactions, 2022, 51, 6747-6755.	1.6	5
3	Highly Effective OER Electrocatalysts Generated from a Two-Dimensional Metal–Organic Framework Including a Sulfur-Containing Linker without Doping. Inorganic Chemistry, 2022, 61, 7051-7059.	1.9	8
4	Conversion of CO ₂ to epoxides or oxazolidinones enabled by a Cu ^I /Cu ^{II} -organic framework bearing a tri-functional linker. Inorganic Chemistry Frontiers, 2022, 9, 4425-4432.	3.0	8
5	A microporous chromium-organic framework fabricated <i>via</i> solvent-assisted metal metathesis for C ₂ H ₂ /CO ₂ separation. Dalton Transactions, 2022, 51, 11658-11664.	1.6	6
6	Effect of Orbital-Symmetry Matching in a Metal–Organic Framework for Highly Efficient C ₂ H ₂ /C ₂ H ₄ and C ₂ H ₂ /CO ₂ Separations. Inorganic Chemistry, 2022, 61, 10263-10266.	1.9	3
7	Thermally induced transformation of a Cu ₄ 1 ₄ -based cluster to a Cu ₂ 1 ₂ -based cluster under mild conditions. Dalton Transactions, 2021, 50, 9016-9020.	1.6	4
8	Modulating the relaxation dynamics <i>via</i> structural transition from a dinuclear dysprosium cluster to a nonanuclear cluster. Dalton Transactions, 2021, 50, 12814-12820.	1.6	3
9	Modulating the Architectures of Cobalt Metal–Organic Frameworks to Fine-tune Slow Magnetic Relaxation Behaviors. Crystal Growth and Design, 2021, 21, 5678-5686.	1.4	6
10	Synthesis, Structures, and Sorption Properties of Two New Metal–Organic Frameworks Constructed by the Polycarboxylate Ligand Derived from Cyclotriphosphazene. ACS Omega, 2021, 6, 23110-23116.	1.6	3
11	Multifunctional Zr-MOF Based on Bisimidazole Tetracarboxylic Acid for pH Sensing and Photoreduction of Cr(VI). ACS Applied Materials & Interfaces, 2021, 13, 54217-54226.	4.0	49
12	Enhancing the separation efficiency of a C ₂ H ₂ /C ₂ H ₄ mixture by a chromium metal–organic framework fabricated <i>via</i> post-synthetic metalation. Journal of Materials Chemistry A, 2020, 8, 2083-2089.	5.2	45
13	Synthesis, crystal structures and luminescence studies of zinc(II) and cadmium(II) complexes with 5-(1H-tetrazol-5-yl)nicotinic acid. Inorganic Chemistry Communication, 2020, 119, 108076.	1.8	2
14	Single-atom implanted two-dimensional MOFs as efficient electrocatalysts for the oxygen evolution reaction. Inorganic Chemistry Frontiers, 2020, 7, 4661-4668.	3.0	26
15	Regulating the Topologies of Zirconium–Organic Frameworks for a Crystal Sponge Applicable to Inorganic Matter. Inorganic Chemistry, 2020, 59, 11940-11944.	1.9	8
16	One new zinc-organic framework constructed from biphenyl-3,4′,5-tricarboxylic acid. Inorganic Chemistry Communication, 2020, 117, 107939.	1.8	0
17	Crystallographic Visualization of Postsynthetic Nickel Clusters into Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 13654-13663.	6.6	60
18	A zirconium-organic framework incorporating with amino and sulfoxide groups. Inorganic Chemistry Communication, 2019, 107, 107484.	1.8	1

Bao Li

#	Article	IF	CITATIONS
19	Hierarchical nickel/phosphorus/nitrogen/carbon composites templated by one metal–organic framework as highly efficient supercapacitor electrode materials. Journal of Materials Chemistry A, 2019, 7, 2875-2883.	5.2	38
20	A mesoporous NNN-pincer-based metal–organic framework scaffold for the preparation of noble-metal-free catalysts. Chemical Communications, 2019, 55, 2023-2026.	2.2	38
21	The effect of coordination habits of metal ions on fabricating metal-organic frameworks with thiophenedicarboxylate. Inorganic Chemistry Communication, 2019, 101, 81-86.	1.8	9
22	A two-fold interpenetrating metal-organic framework based on [Co4O(COO)6] cluster: Synthesis, crystal structure and catalytic properties. Inorganic Chemistry Communication, 2019, 106, 180-184.	1.8	6
23	Structural tuning of zinc–porphyrin frameworks <i>via</i> auxiliary nitrogen-containing ligands towards selective adsorption of cationic dyes. Chemical Communications, 2019, 55, 6527-6530.	2.2	23
24	Unconventional Method for Fabricating Valence Tautomeric Materials: Integrating Redox Center within a Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 6822-6826.	6.6	39
25	Facile Fabrication of a Multifunctional Metal–Organic Framework-based Sensor Exhibiting Exclusive Solvochromic Behaviors toward Ketone Molecules. ACS Applied Materials & Interfaces, 2019, 11, 8227-8233.	4.0	22
26	Metal–Organic Framework Containing Planar Metal-Binding Sites: Efficiently and Cost-Effectively Enhancing the Kinetic Separation of C ₂ H ₂ /C ₂ H ₄ . Journal of the American Chemical Society, 2019, 141, 3807-3811.	6.6	144
27	Creating Well-Defined Hexabenzocoronene in Zirconium Metal–Organic Framework by Postsynthetic Annulation. Journal of the American Chemical Society, 2019, 141, 2054-2060.	6.6	148
28	Series of Highly Stable Lanthanide-Organic Frameworks Constructed by a Bifunctional Linker: Synthesis, Crystal Structures, and Magnetic and Luminescence Properties. Inorganic Chemistry, 2018, 57, 2577-2583.	1.9	33
29	Porous Interdigitation Molecular Cage from Tetraphenylethylene Trimeric Macrocycles That Showed Highly Selective Adsorption of CO ₂ and TNT Vapor in Air. Organic Letters, 2018, 20, 321-324.	2.4	18
30	External Pressure Effect on a Twofold Interpenetrated 3D <i>PtS</i> -Type Spin-Crossover Coordination Polymer. Crystal Growth and Design, 2018, 18, 1931-1934.	1.4	13
31	Sophisticated Construction of Electronically Labile Materials: A Neutral, Radical-Rich, Cobalt Valence Tautomeric Triangle. Journal of the American Chemical Society, 2018, 140, 14581-14585.	6.6	21
32	Enhancing Pore-Environment Complexity Using a Trapezoidal Linker: Toward Stepwise Assembly of Multivariate Quinary Metal–Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 12328-12332.	6.6	78
33	Two Self-Interpenetrating Copper(II)-Paddlewheel Metal–Organic Frameworks Constructed from Bifunctional Triazolate–Carboxylate Linkers. Crystal Growth and Design, 2018, 18, 6204-6210.	1.4	8
34	Two Novel Coordination Polymers Based on Semi-rigid Tetrapyridine Fine-Tuned by Different Carboxylates. Journal of Chemical Crystallography, 2018, 48, 73-77.	0.5	1
35	Magnetic Metal–Organic Framework Exhibiting Quick and Selective Solvatochromic Behavior along with Reversible Crystal-to-Amorphous-to-Crystal Transformation. Inorganic Chemistry, 2018, 57, 7006-7014.	1.9	38
36	Nanosized Chiral [Mn ₆ Ln ₂] Clusters Modeled by Enantiomeric Schiff Base Derivatives: Synthesis, Crystal Structures, and Magnetic Properties. Inorganic Chemistry, 2018, 57, 8639-8645.	1.9	25

Bao Li

#	Article	IF	CITATIONS
37	Sequential Transformation of Zirconium(IV)â€MOFs into Heterobimetallic MOFs Bearing Magnetic Anisotropic Cobalt(II) Centers. Angewandte Chemie - International Edition, 2018, 57, 12578-12583.	7.2	70
38	Sequential Transformation of Zirconium(IV)â€MOFs into Heterobimetallic MOFs Bearing Magnetic Anisotropic Cobalt(II) Centers. Angewandte Chemie, 2018, 130, 12758-12763.	1.6	5
39	Series of Single-Ion and 1D Chain Complexes Based on Quinolinic Derivative: Synthesis, Crystal Structures, HF-EPR, and Magnetic Properties. Inorganic Chemistry, 2018, 57, 7757-7762.	1.9	17
40	Embedding 1D or 2D cobalt–carboxylate substrates in 3D coordination polymers exhibiting slow magnetic relaxation behaviors: crystal structures, high-field EPR, and magnetic studies. Dalton Transactions, 2017, 46, 4786-4795.	1.6	10
41	2D Co-based coordination polymer with a histidine derivative as an efficient heterogeneous catalyst for the oxidation of cyclohexene. CrystEngComm, 2017, 19, 2126-2132.	1.3	12
42	A series of six-membered lanthanide rings based on 2,2-bis(hydroxymethyl)-2,2′,2″-nitrilotriethanol: synthesis, crystal structures and magnetic properties. CrystEngComm, 2017, 19, 4807-4814.	1.3	11
43	A series of transition metal coordination polymers based on a rigid bi-functional carboxylate–triazolate tecton. CrystEngComm, 2017, 19, 4586-4594.	1.3	12
44	Metal–organic frameworks based on halogen-bridged dinuclear-Cu-nodes as promising materials for high performance supercapacitor electrodes. CrystEngComm, 2017, 19, 7177-7184.	1.3	30
45	Synthesis, crystal structure and luminescence studies of zinc(<scp>ii</scp>) and cadmium(<scp>ii</scp>) complexes with 6-(1H-tetrazol-5-yl)-2-naphthoic acid. CrystEngComm, 2016, 18, 6396-6402.	1.3	13
46	Silver(I) Architectures Based on Rigid Terpyridyl arboxyl Ligands: Synthesis, Crystal Structure and Electrochemical Properties. Chinese Journal of Chemistry, 2016, 34, 1027-1032.	2.6	3
47	A porous framework based on tetrakis(4-pyridyloxymethyl)methane fine-tuned by metal ions: synthesis, crystal structures and adsorption properties. New Journal of Chemistry, 2016, 40, 1430-1435.	1.4	3
48	1D infinite helical water chain encapsulated in a supramolecular complex based on amino acid derivate. Molecular Crystals and Liquid Crystals, 2016, 625, 253-258.	0.4	3
49	Effect of anions on structure and luminescence property of Cu(I)-4,6-di(3-pyridylethynyl)dibenzothiophene complexes. Inorganica Chimica Acta, 2016, 442, 97-104.	1.2	8
50	Mono-nuclear and Hexa-nuclear Iron(III) Compounds Based on Phenol-Pyrazole Ligand: Synthesis, Crystal Structure and Magnetic Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 1380-1385.	1.9	0
51	Structural diversities and magnetic properties of azide-containing coordination polymers based on flexible tetra-pyridinate ligands. CrystEngComm, 2015, 17, 1556-1563.	1.3	14
52	A Three-Dimensional Complex with a One-Dimensional Cobalt-Hydroxyl Chain Based on Planar Nonanuclear Clusters Showing Spin-Canted Antiferromagnetism. Inorganic Chemistry, 2015, 54, 3331-3336.	1.9	41
53	Template controlled synthesis of cluster-based porous coordination polymers: crystal structure, magnetism and adsorption. New Journal of Chemistry, 2015, 39, 7333-7339.	1.4	17
54	Luminescent Response of One Anionic Metal–Organic Framework Based on Novel Octa-nuclear Zinc Cluster to Exchanged Cations. Crystal Growth and Design, 2014, 14, 410-413.	1.4	35

Bao Li

#	Article	IF	CITATIONS
55	Four Coordination Polymers Based on Identical Eight-Connected Heptanuclear Clusters: Spin Canting, Spin Glass, Antiferromagnetism, and Gas Adsorption. Inorganic Chemistry, 2013, 52, 11573-11579.	1.9	38
56	Lanthanide coordination polymers with hexa-carboxylate ligands derived from cyclotriphosphazene as bridging linkers: synthesis, thermal and luminescent properties. CrystEngComm, 2013, 15, 7732.	1.3	24
57	Temperature-controlled synthesis and luminescent properties of two novel coordination polymers modeled by hexa-carboxylate ligand derived from cyclotriphosphazene. Dalton Transactions, 2013, 42, 2588-2593.	1.6	33
58	Various crystal structures based on 4,4′-(diethynylanthracene-9,10-diyl) dibenzoic acid: from 0D dimer to 3D net framework. CrystEngComm, 2013, 15, 8273.	1.3	15
59	Unidirectional Charge Transfer in <i>Di</i> -cobalt Valence Tautomeric Compound Finely Tuned by Ancillary Ligand. Inorganic Chemistry, 2013, 52, 4136-4138.	1.9	18
60	Variable architectures of Zinc coordination polymers modeled by tetra-pyridine ligands with different anions. CrystEngComm, 2012, 14, 6770.	1.3	12
61	Two novel interpenetrating silver(i) coordination architectures modeled by semi-rigid tetra-pyridinate ligands. CrystEngComm, 2012, 14, 8396.	1.3	9
62	Two novel high-dimensional iron(ii) coordination polymers modeled by semi-rigid tetrapyridines. CrystEngComm, 2012, 14, 6049.	1.3	10
63	Thermally Induced and Photoinduced Valence Tautomerism in a Two-Dimensional Coordination Polymer. Inorganic Chemistry, 2011, 50, 424-426.	1.9	60
64	Temperature-controlled synthesis of two novel coordination polymers modeled by semi-rigid tetrapyridines. CrystEngComm, 2011, 13, 7025.	1.3	30
65	Solvent-Induced Transformation of Single Crystals of a Spin-Crossover (SCO) Compound to Single Crystals with Two Distinct SCO Centers. Journal of the American Chemical Society, 2010, 132, 1558-1566.	6.6	241
66	Pressure Effects on a Spin-Crossover Monomeric Compound [Fe(pmea)(SCN) ₂] (pmea =) Tj ETQq0	OQ _G BT/	Overlock 10 T

67	An iron(ii) incomplete spin-crossover compound: pressure effects and Mössbauer spectroscopy study. Dalton Transactions, 2010, 39, 2288.	1.6	28
68	Side-effect of ancillary ligand on electron transfer and photodynamics of a dinuclear valence tautomeric complex. Chemical Communications, 2008, , 2269.	2.2	59
69	The effects of pressure on valence tautomeric transitions of dinuclear cobalt complexes. Chemical Communications, 2008, , 6019.	2.2	32