Silvia Del Din

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7733615/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acceptability and deliverability of an auditory rhythmical cueing (ARC) training programme for use at home and outdoors to improve gait and physical activity post-stroke. Archives of Physiotherapy, 2022, 12, 1.	1.8	1
2	Factors Influencing Habitual Physical Activity in Parkinson's Disease: Considering the Psychosocial State and Wellbeing of People with Parkinson's and Their Carers. Sensors, 2022, 22, 871.	3.8	5
3	Optimising function and well-being in older adults: protocol for an integrated research programme in Aotearoa/New Zealand. BMC Geriatrics, 2022, 22, 215.	2.7	2
4	Investigating the Impact of Environment and Data Aggregation by Walking Bout Duration on Parkinson's Disease Classification Using Machine Learning. Frontiers in Aging Neuroscience, 2022, 14, 808518.	3.4	9
5	An Algorithm for Accurate Marker-Based Gait Event Detection in Healthy and Pathological Populations During Complex Motor Tasks. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	4.1	6
6	Walking is Associated With Physical Capacity and Fatigue but not Cognition in Long-Term Care Residents. Journal of the American Medical Directors Association, 2022, 23, e1-e2.	2.5	1
7	The Impact of Environment on Gait Assessment: Considerations from Real-World Gait Analysis in Dementia Subtypes. Sensors, 2021, 21, 813.	3.8	31
8	Balance Impairments as Differential Markers of Dementia Disease Subtype. Frontiers in Bioengineering and Biotechnology, 2021, 9, 639337.	4.1	6
9	Exenatide once weekly over 2 years as a potential disease-modifying treatment for Parkinson's disease: protocol for a multicentre, randomised, double blind, parallel group, placebo controlled, phase 3 trial: The â€`Exenatide-PD3' study. BMJ Open, 2021, 11, e047993.	1.9	32
10	Quantifying physical activity in aged residential care facilities: A structured review. Ageing Research Reviews, 2021, 67, 101298.	10.9	13
11	Gait analysis as a clinical tool for dementia: current perspectives and future challenges. Advances in Clinical Neuroscience & Rehabilitation: ACNR, 2021, 20, .	0.1	3
12	Detecting Sensitive Mobility Features for Parkinson's Disease Stages Via Machine Learning. Movement Disorders, 2021, 36, 2144-2155.	3.9	40
13	Body-Worn Sensors for Remote Monitoring of Parkinson's Disease Motor Symptoms: Vision, State of the Art, and Challenges Ahead. Journal of Parkinson's Disease, 2021, 11, S35-S47.	2.8	47
14	Consensus based framework for digital mobility monitoring. PLoS ONE, 2021, 16, e0256541.	2.5	31
15	Wild by Design: Workshop on Designing Ubiquitous Health Monitoring Technologies for Challenging Environments. , 2021, , .		2
16	Technical validation of real-world monitoring of gait: a multicentric observational study. BMJ Open, 2021, 11, e050785.	1.9	56
17	Predicting the Progression of Parkinson's Disease MDS-UPDRS-III Motor Severity Score from Gait Data using Deep Learning. , 2021, 2021, 249-252.		1
18	Digital mobility outcomes to assess habitual physical activity in people with cognitive impairment: A systematic review. Alzheimer's and Dementia, 2021, 17, e055547.	0.8	0

#	Article	IF	CITATIONS
19	Factors That Influence Habitual Activity in Mild Cognitive Impairment and Dementia. Gerontology, 2020, 66, 197-208.	2.8	16
20	Evaluating the effects of an exercise program (Staying UpRight) for older adults in long-term care on rates of falls: study protocol for a randomised controlled trial. Trials, 2020, 21, 46.	1.6	12
21	Differentiating dementia disease subtypes with gait analysis: feasibility of wearable sensors?. Gait and Posture, 2020, 76, 372-376.	1.4	68
22	Continuous Real-World Gait Monitoring in Idiopathic REM Sleep Behavior Disorder. Journal of Parkinson's Disease, 2020, 10, 283-299.	2.8	27
23	Are Accelerometer-based Functional Outcome Assessments Feasible and Valid After Treatment for Lower Extremity Sarcomas?. Clinical Orthopaedics and Related Research, 2020, 478, 482-503.	1.5	12
24	Gait Asymmetry Post-Stroke: Determining Valid and Reliable Methods Using a Single Accelerometer Located on the Trunk. Sensors, 2020, 20, 37.	3.8	29
25	Turning Detection During Gait: Algorithm Validation and Influence of Sensor Location and Turning Characteristics in the Classification of Parkinson's Disease. Sensors, 2020, 20, 5377.	3.8	22
26	Monitoring Walking Activity with Wearable Technology in Rural-dwelling Older Adults in Tanzania: A Feasibility Study Nested within a Frailty Prevalence Study. Experimental Aging Research, 2020, 46, 367-381.	1.2	10
27	Quantifying Reliable Walking Activity with a Wearable Device in Aged Residential Care: How Many Days Are Enough?. Sensors, 2020, 20, 6314.	3.8	8
28	An Objective Methodology for the Selection of a Device for Continuous Mobility Assessment. Sensors, 2020, 20, 6509.	3.8	15
29	Gait Analysis with Wearables Can Accurately Classify Fallers from Non-Fallers: A Step toward Better Management of Neurological Disorders. Sensors, 2020, 20, 6992.	3.8	24
30	Classification of Neurological Patients to Identify Fallers Based on Spatial-Temporal Gait Characteristics Measured by a Wearable Device. Sensors, 2020, 20, 4098.	3.8	19
31	Use of wearable technology to assess activity in cognitively impaired populations: Inside care homes and the community. Alzheimer's and Dementia, 2020, 16, e039074.	0.8	0
32	Entropy of Real-World Gait in Parkinson's Disease Determined from Wearable Sensors as a Digital Marker of Altered Ambulatory Behavior. Sensors, 2020, 20, 2631.	3.8	23
33	Auditory rhythmical cueing to improve gait and physical activity in community-dwelling stroke survivors (ACTIVATE): study protocol for a pilot randomised controlled trial. Pilot and Feasibility Studies, 2020, 6, 68.	1.2	2
34	Detection of Gait From Continuous Inertial Sensor Data Using Harmonic Frequencies. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 1-1.	6.3	18
35	Tossing and Turning in Bed: Nocturnal Movements in Parkinson's Disease. Movement Disorders, 2020, 35, 959-968.	3.9	34
36	Falls Risk in Relation to Activity Exposure in High-Risk Older Adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 1198-1205.	3.6	40

#	Article	IF	CITATIONS
37	Accelerometry-Based Digital Gait Characteristics for Classification of Parkinson's Disease: What Counts?. IEEE Open Journal of Engineering in Medicine and Biology, 2020, 1, 65-73.	2.3	34
38	Gait analysis with wearables predicts conversion to Parkinson disease. Annals of Neurology, 2019, 86, 357-367.	5.3	137
39	WEARABLES REVEAL A GAP BETWEEN GAIT PERFORMANCE IN THE LAB AND DURING 24/7 MONITORING IN OLDER ADULTS. Innovation in Aging, 2019, 3, S335-S335.	0.1	0
40	Evaluation of daily walking activity and gait profiles: a novel application of a time series analysis framework. , 2019, 2019, 2482-2485.		4
41	Reply to "Quantitative Motor Functioning in Prodromal Parkinson Diseaseâ€: Annals of Neurology, 2019, 86, 981-982.	5.3	О
42	Associations between daily-living physical activity and laboratory-based assessments of motor severity in patients with falls and Parkinson's disease. Parkinsonism and Related Disorders, 2019, 62, 85-90.	2.2	70
43	Is every-day walking in older adults more analogous to dual-task walking or to usual walking? Elucidating the gaps between gait performance in the lab and during 24/7 monitoring. European Review of Aging and Physical Activity, 2019, 16, 6.	2.9	151
44	The Role of Movement Analysis in Diagnosing and Monitoring Neurodegenerative Conditions: Insights from Gait and Postural Control. Brain Sciences, 2019, 9, 34.	2.3	109
45	A Novel Parameterisation of Phase Plots for Monitoring of Parkinson's Disease. , 2019, 2019, 5890-5893.		5
46	Deep Learning Techniques for Improving Digital Gait Segmentation. , 2019, 2019, 1834-1837.		22
47	Selecting Clinically Relevant Gait Characteristics for Classification of Early Parkinson's Disease: A Comprehensive Machine Learning Approach. Scientific Reports, 2019, 9, 17269.	3.3	76
48	Comparison of Walking Protocols and Gait Assessment Systems for Machine Learning-Based Classification of Parkinson's Disease. Sensors, 2019, 19, 5363.	3.8	35
49	Analysis of Free-Living Gait in Older Adults With and Without Parkinson's Disease and With and Without a History of Falls: Identifying Generic and Disease-Specific Characteristics. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 500-506.	3.6	132
50	Longitudinal changes over thirty-six months in postural control dynamics and cognitive function in people with Parkinson's disease. Gait and Posture, 2018, 62, 468-474.	1.4	25
51	Gait in Mild Alzheimer's Disease: Feasibility of Multi-Center Measurement in the Clinic and Home with Body-Worn Sensors: A Pilot Study. Journal of Alzheimer's Disease, 2018, 63, 331-341.	2.6	42
52	Everyday Stepping Quantity and Quality Among Older Adult Fallers With and Without Mild Cognitive Impairment: Initial Evidence for New Motor Markers of Cognitive Deficits?. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 1078-1082.	3.6	39
53	Postural Dynamics Are Associated With Cognitive Decline in Parkinson's Disease. Frontiers in Neurology, 2018, 9, 1044.	2.4	25
54	Developing a toolkit for the assessment and monitoring of musculoskeletal ageing. Age and Ageing, 2018, 47, iv1-iv19.	1.6	25

#	Article	IF	CITATIONS
55	Towards a toolkit for the assessment and monitoring of musculoskeletal ageing. Age and Ageing, 2018, 47, 774-777.	1.6	1
56	Estimation of spatio-temporal parameters of gait from magneto-inertial measurement units: multicenter validation among Parkinson, mildly cognitively impaired and healthy older adults. BioMedical Engineering OnLine, 2018, 17, 58.	2.7	56
57	Home-Based Physical Behavior in Late Stage Parkinson Disease Dementia: Differences between Cognitive Subtypes. Neurodegenerative Diseases, 2017, 17, 135-144.	1.4	10
58	Detecting free-living steps and walking bouts: validating an algorithm for macro gait analysis. Physiological Measurement, 2017, 38, N1-N15.	2.1	109
59	A model of free-living gait: A factor analysis in Parkinson's disease. Gait and Posture, 2017, 52, 68-71.	1.4	63
60	Validation of a Step Detection Algorithm during Straight Walking and Turning in Patients with Parkinson's Disease and Older Adults Using an Inertial Measurement Unit at the Lower Back. Frontiers in Neurology, 2017, 8, 457.	2.4	79
61	Comprehensive measurement of stroke gait characteristics with a single accelerometer in the laboratory and community: a feasibility, validity and reliability study. Journal of NeuroEngineering and Rehabilitation, 2017, 14, 130.	4.6	35
62	Accelerometer-based gait assessment: Pragmatic deployment on an international scale. , 2016, , .		8
63	Validity of a wearable accelerometer to quantify gait in spinocerebellar ataxia type 6. Physiological Measurement, 2016, 37, N105-N117.	2.1	36
64	Measuring gait with an accelerometer-based wearable: influence of device location, testing protocol and age. Physiological Measurement, 2016, 37, 1785-1797.	2.1	51
65	Vision, visuo-cognition and postural control in Parkinson's disease: An associative pilot study. Gait and Posture, 2016, 48, 74-76.	1.4	9
66	Free-living gait characteristics in ageing and Parkinson's disease: impact of environment and ambulatory bout length. Journal of NeuroEngineering and Rehabilitation, 2016, 13, 46.	4.6	228
67	Addition of a non-immersive virtual reality component to treadmill training to reduce fall risk in older adults (V-TIME): a randomised controlled trial. Lancet, The, 2016, 388, 1170-1182.	13.7	328
68	Free-living monitoring of Parkinson's disease: Lessons from the field. Movement Disorders, 2016, 31, 1293-1313.	3.9	252
69	Towards holistic free-living assessment in Parkinson's disease: Unification of gait and fall algorithms with a single accelerometer. , 2016, 2016, 651-654.		16
70	Altered EMG patterns in diabetic neuropathic and not neuropathic patients during step ascending and descending. Journal of Electromyography and Kinesiology, 2016, 31, 32-39.	1.7	13
71	Toward a low-cost gait analysis system for clinical and free-living assessment. , 2016, 2016, 1874-1877.		9
72	Beyond the front end: Investigating a thigh worn accelerometer device for step count and bout detection in Parkinson's disease. Medical Engineering and Physics, 2016, 38, 1524-1529.	1.7	13

#	Article	IF	CITATIONS
73	Estimating cut points: A simple method for new wearables. Maturitas, 2016, 83, 78-82.	2.4	8
74	Time-dependent changes in postural control in early Parkinson's disease: what are we missing?. Medical and Biological Engineering and Computing, 2016, 54, 401-410.	2.8	18
75	Validation of an Accelerometer to Quantify a Comprehensive Battery of Gait Characteristics in Healthy Older Adults and Parkinson's Disease: Toward Clinical and at Home Use. IEEE Journal of Biomedical and Health Informatics, 2016, 20, 838-847.	6.3	246
76	Instrumented assessment of test battery for physical capability using an accelerometer: a feasibility study. Physiological Measurement, 2015, 36, N71-N83.	2.1	23
77	Instrumenting gait with an accelerometer: A system and algorithm examination. Medical Engineering and Physics, 2015, 37, 400-407.	1.7	170
78	iCap: Instrumented assessment of physical capability. Maturitas, 2015, 82, 116-122.	2.4	35
79	Within trial validation and reliability of a single tri-axial accelerometer for gait assessment. , 2014, 2014, 5892-5.		19
80	Assessment of biofeedback rehabilitation in post-stroke patients combining fMRI and gait analysis: a case study. Journal of NeuroEngineering and Rehabilitation, 2014, 11, 53.	4.6	17
81	Biomechanical assessment of balance and posture in subjects with ankylosing spondylitis. Journal of NeuroEngineering and Rehabilitation, 2012, 9, 63.	4.6	49
82	A low-power multi-modal body sensor network with application to epileptic seizure monitoring. , 2011, 2011, 1806-9.		5
83	Impaired gait in ankylosing spondylitis. Medical and Biological Engineering and Computing, 2011, 49, 801-809.	2.8	46
84	Estimating fugl-meyer clinical scores in stroke survivors using wearable sensors. , 2011, 2011, 5839-42.		65
85	Instrumented gait assessment with a single wearable: an introductory tutorial. F1000Research, 0, 5, 2323.	1.6	24
86	Tossing and Turning in Bed: A Wearable Sensor Documents Abnormal Nocturnal Movements in Parkinson's Disease. SSRN Electronic Journal, 0, , .	0.4	0
87	Free-living monitoring of ambulatory activity after treatments for lower extremity musculoskeletal cancers using an accelerometer-based wearable – a new paradigm to outcome assessment in musculoskeletal oncology?. Disability and Rehabilitation, 0, , 1-10.	1.8	2