Li Xiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7733515/publications.pdf

Version: 2024-02-01

361413 454955 1,194 30 20 30 citations h-index g-index papers 31 31 31 1321 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Deposition and Adhesion of Polydopamine on the Surfaces of Varying Wettability. ACS Applied Materials & Samp; Interfaces, 2017, 9, 30943-30950.	8.0	139
2	Ultra-strong bio-glue from genetically engineered polypeptides. Nature Communications, 2021, 12, 3613.	12.8	104
3	Injectable, Self-Healing Hydrogel with Tunable Optical, Mechanical, and Antimicrobial Properties. Chemistry of Materials, 2019, 31, 2366-2376.	6.7	86
4	Nanomechanics of Anionâ^Ï€ Interaction in Aqueous Solution. Journal of the American Chemical Society, 2020, 142, 1710-1714.	13.7	67
5	Fundamentals and Advances in the Adhesion of Polymer Surfaces and Thin Films. Langmuir, 2019, 35, 15914-15936.	3 . 5	66
6	A wet adhesion strategy <i>via</i> synergistic cation–π and hydrogen bonding interactions of antifouling zwitterions and mussel-inspired binding moieties. Journal of Materials Chemistry A, 2019, 7, 21944-21952.	10.3	66
7	Injectable Self-Healing Hydrogel via Biological Environment-Adaptive Supramolecular Assembly for Gastric Perforation Healing. ACS Nano, 2021, 15, 9913-9923.	14.6	57
8	Revisiting the adhesion mechanism of mussel-inspired chemistry. Chemical Science, 2022, 13, 1698-1705.	7.4	53
9	Biomimetic Lubrication and Surface Interactions of Dopamine-Assisted Zwitterionic Polyelectrolyte Coatings. Langmuir, 2018, 34, 11593-11601.	3.5	50
10	Tannic acid modified MoS2 nanosheet membranes with superior water flux and ion/dye rejection. Journal of Colloid and Interface Science, 2020, 560, 177-185.	9.4	45
11	Adhesive Coacervates Driven by Hydrogenâ€Bonding Interaction. Small, 2020, 16, e2004132.	10.0	45
12	Universal Mussel-Inspired Ultrastable Surface-Anchoring Strategy via Adaptive Synergy of Catechol and Cations. ACS Applied Materials & Samp; Interfaces, 2018, 10, 2166-2173.	8.0	43
13	Nanomechanics of π-cation-π interaction with implications for bio-inspired wet adhesion. Acta Biomaterialia, 2020, 117, 294-301.	8.3	37
14	Nature of Asphaltene Aggregates. Energy & Samp; Fuels, 2019, 33, 3694-3710.	5.1	36
15	Tough and Alkaline-Resistant Mussel-Inspired Wet Adhesion with Surface Salt Displacement via Polydopamine/Amine Synergy. Langmuir, 2019, 35, 5257-5263.	3 . 5	35
16	Nanomechanics of Lignin–Cellulase Interactions in Aqueous Solutions. Biomacromolecules, 2021, 22, 2033-2042.	5.4	32
17	Nanoconfining Cation-Ï€ Interactions as a Modular Strategy to Construct Injectable Self-Healing Hydrogel. CCS Chemistry, 2022, 4, 2724-2737.	7.8	31
18	Dynamic Flexible Hydrogel Network with Biological Tissue-like Self-Protective Functions. Chemistry of Materials, 2020, 32, 10545-10555.	6.7	30

#	Article	IF	CITATION
19	Catechol-Vanadium Binding Enhances Cross-Linking and Mechanics of a Mussel Byssus Coating Protein. Chemistry of Materials, 2021, 33, 6530-6540.	6.7	27
20	Cost-Effective Strategy for Surface Modification via Complexation of Disassembled Polydopamine with Fe(III) Ions. Langmuir, 2019, 35, 4101-4109.	3.5	26
21	Molecular Weight Dependence of Synthetic Glycopolymers on Flocculation and Dewatering of Fine Particles. Langmuir, 2016, 32, 11615-11622.	3.5	18
22	Surface forces and interaction mechanisms of soft thin films under confinement: a short review. Soft Matter, 2020, 16, 6697-6719.	2.7	16
23	Interaction Mechanisms of Zwitterions with Opposite Dipoles in Aqueous Solutions. Langmuir, 2019, 35, 2842-2853.	3.5	13
24	Highly stretchable, elastic, antimicrobial conductive hydrogels with environment-adaptive adhesive property for health monitoring. Journal of Colloid and Interface Science, 2022, 622, 612-624.	9.4	13
25	Probing the Interaction Forces of Phenol/Amine Deposition in Wet Adhesion: Impact of Phenol/Amine Mass Ratio and Surface Properties. Langmuir, 2019, 35, 15639-15650.	3.5	12
26	Surface Interactions between Water-in-Oil Emulsions with Asphaltenes and Electroless Nickel–Phosphorus Coating. Langmuir, 2020, 36, 897-905.	3.5	12
27	Probing molecular interactions of PEGylated chitosan in aqueous solutions using a surface force apparatus. Physical Chemistry Chemical Physics, 2019, 21, 20571-20581.	2.8	11
28	Probing the Interaction Mechanism between Oil-in-Water Emulsions and Electroless Nickel–Phosphorus Coating with Implications for Antifouling in Oil Production. Energy & Diese, 2019, 33, 3764-3775.	5.1	11
29	Probing fouling mechanism of naphthenic acids on forward osmosis polymer membranes in oil sands process water treatment. Journal of Membrane Science, 2019, 576, 161-170.	8.2	8
30	Probing Anionâ°Ï€ Interactions between Fluoroarene and Carboxylate Anion in Aqueous Solutions.	9.4	5