Rajesh Kumar Prusty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7733278/publications.pdf

Version: 2024-02-01

83 papers

1,568 citations

331642 21 h-index 35 g-index

85 all docs 85 docs citations

85 times ranked 1064 citing authors

#	Article	IF	CITATIONS
1	Mechanical performance of CNT-filled glass fiber/epoxy composite in in-situ elevated temperature environments emphasizing the role of CNT content. Composites Part A: Applied Science and Manufacturing, 2016, 84, 364-376.	7.6	146
2	Reinforcement effect of graphene oxide in glass fibre/epoxy composites at in-situ elevated temperature environments: An emphasis on graphene oxide content. Composites Part A: Applied Science and Manufacturing, 2017, 95, 40-53.	7.6	98
3	Mechanical behavior of Graphene decorated carbon fiber reinforced polymer composites: An assessment of the influence of functional groups. Composites Part A: Applied Science and Manufacturing, 2019, 122, 36-44.	7.6	96
4	Effect of post-curing on thermal and mechanical behavior of GFRP composites. IOP Conference Series: Materials Science and Engineering, 2015, 75, 012012.	0.6	81
5	CNT/polymer interface in polymeric composites and its sensitivity study at different environments. Advances in Colloid and Interface Science, 2017, 240, 77-106.	14.7	63
6	Flexural behaviour of CNT-filled glass/epoxy composites in an in-situ environment emphasizing temperature variation. Composites Part B: Engineering, 2015, 83, 166-174.	12.0	58
7	Evaluation of the role of functionalized CNT in glass fiber/epoxy composite at above- and sub-zero temperatures: Emphasizing interfacial microstructures. Composites Part A: Applied Science and Manufacturing, 2017, 101, 215-226.	7.6	47
8	Structureâ€"mechanical property correlations in mechanochromic luminescent crystals of boron difluoride dibenzoylmethane derivatives. IUCrJ, 2015, 2, 611-619.	2.2	42
9	Effects of temperature and load on the creep performance of CNT reinforced laminated glass fiber/epoxy composites. International Journal of Mechanical Sciences, 2019, 150, 539-547.	6.7	39
10	Creep behaviour prediction of multi-layer graphene embedded glass fiber/epoxy composites using time-temperature superposition principle. Composites Part A: Applied Science and Manufacturing, 2018, 107, 507-518.	7.6	36
11	Mechanical, thermomechanical, and creep performance of <scp>CNT</scp> embedded epoxy at elevated temperatures: An emphasis on the role of carboxyl functionalization. Journal of Applied Polymer Science, 2017, 134, .	2.6	35
12	Influence of cryogenic temperature on mechanical behavior of graphene carboxyl grafted carbon fiber reinforced polymer composites: An emphasis on concentration of nanofillers. Composites Communications, 2020, 20, 100369.	6.3	33
13	Experimental optimization of flexural behaviour through inter-ply fibre hybridization in FRP composite. Construction and Building Materials, 2016, 118, 327-336.	7.2	31
14	An assessment of flexural performance of liquid nitrogen conditioned glass/epoxy composites with multiwalled carbon nanotube. Journal of Composite Materials, 2016, 50, 3077-3088.	2.4	27
15	Mechanical behaviour of graphene oxide embedded epoxy nanocomposite at sub- and above- zero temperature environments. Composites Communications, 2017, 3, 47-50.	6.3	27
16	In-situ elevated temperature flexural and creep response of inter-ply glass/carbon hybrid FRP composites. Mechanics of Materials, 2017, 105, 99-111.	3.2	27
17	Creep behaviour of graphite oxide nanoplates embedded glass fiber/epoxy composites: Emphasizing the role of temperature and stress. Composites Part A: Applied Science and Manufacturing, 2017, 102, 166-177.	7.6	26
18	Effects of acid, alkaline, and seawater aging on the mechanical and thermomechanical properties of glass fiber/epoxy composites filled with carbon nanofibers. Journal of Applied Polymer Science, 2020, 137, 48434.	2.6	26

#	Article	lF	Citations
19	Waterâ€induced degradations in MWCNT embedded glass fiber/epoxy composites: An emphasis on aging temperature. Journal of Applied Polymer Science, 2018, 135, 45987.	2.6	25
20	Effects of carbon nanotube/polymer interfacial bonding on the longâ€ŧerm creep performance of nanophased glass fiber/epoxy composites. Polymer Composites, 2020, 41, 478-493.	4.6	24
21	Temperature dependent reinforcement efficiency of carbon nanotube in polymer composite. Composites Communications, 2016, 1, 29-32.	6.3	22
22	Interface modification of carbon fiber reinforced epoxy composite by hydroxyl/carboxyl functionalized carbon nanotube. Materials Today: Proceedings, 2020, 27, 1473-1478.	1.8	22
23	Improving delamination resistance of carbon fiber reinforced polymeric composite by interface engineering using carbonaceous nanofillers through electrophoretic deposition: An assessment at different inâ€service temperatures. Journal of Applied Polymer Science, 2021, 138, 50208.	2.6	22
24	Finite element modelling and experimentation of plain weave glass/epoxy composites under high strain-rate compression loading for estimation of Johnson-Cook model parameters. International Journal of Impact Engineering, 2022, 167, 104262.	5.0	22
25	Creep performance of CNT reinforced glass fiber/epoxy composites: Roles of temperature and stress. Journal of Applied Polymer Science, 2019, 136, 47674.	2.6	21
26	Improved mechanical responses of GFRP composites with epoxy-vinyl ester interpenetrating polymer network. Polymer Testing, 2021, 93, 107008.	4.8	21
27	Recent advancements in interface engineering of carbon fiber reinforced polymer composites and their durability studies at different service temperatures. Polymer Composites, 2022, 43, 4126-4164.	4.6	20
28	Effect of loading rate on tensile properties and failure behavior of glass fibre/epoxy composite. IOP Conference Series: Materials Science and Engineering, 2016, 115, 012017.	0.6	19
29	Effect of nanosilica and nanoclay reinforcement on flexural and thermal properties of glass fiber/epoxy composites. Materials Today: Proceedings, 2020, 33, 5098-5102.	1.8	19
30	Effect of repeated hydrothermal cycling on the durability of glass fiber/epoxy composites with and without carbon nanotube reinforcement. Polymer Composites, 2021, 42, 6160-6172.	4.6	19
31	Correlations between mechanical and photoluminescence properties in Eu doped sodium bismuth titanate. Solid State Communications, 2013, 173, 38-41.	1.9	18
32	Enhanced barrier, mechanical and viscoelastic properties of graphene oxide embedded glass fibre/epoxy composite for marine applications. Construction and Building Materials, 2021, 268, 121784.	7.2	18
33	A comparative study of the mechanical performance of Glass and Glass/Carbon hybrid polymer composites at different temperature environments. IOP Conference Series: Materials Science and Engineering, 2015, 75, 012002.	0.6	17
34	Effects of seawater absorption and desorption on the longâ€term creep performance of graphene oxide embedded glass fiber/epoxy composites. Polymer Composites, 2020, 41, 4861-4871.	4.6	17
35	Tensile behavior of MWCNT enhanced glass fiber reinforced polymeric composites at various crosshead speeds. IOP Conference Series: Materials Science and Engineering, 2017, 178, 012006.	0.6	16
36	Lifetime Prediction of Nano-Silica based Glass Fibre/Epoxy composite by Time Temperature Superposition Principle. IOP Conference Series: Materials Science and Engineering, 2018, 338, 012020.	0.6	16

#	Article	IF	CITATIONS
37	Effects of electrophoretic deposition process parameters on the mechanical properties of graphene carboxylâ€grafted carbon fiber reinforced polymer composite. Journal of Applied Polymer Science, 2020, 137, 48925.	2.6	15
38	Mechanical and thermal behaviour of multi-layer graphene and nanosilica reinforced glass Fiber/Epoxy composites. Materials Today: Proceedings, 2020, 33, 5184-5189.	1.8	15
39	Interfacial behavior of graphene carboxylâ€grafted carbon fiber reinforced polymer composites at elevated temperatures: Emphasis on the effect of electrophoretic deposition time. Polymer Composites, 2021, 42, 5893-5903.	4.6	14
40	Enhanced creep resistance of GFRP composites through interpenetrating polymer network. International Journal of Mechanical Sciences, 2021, 212, 106728.	6.7	12
41	Effect of graphene-based nanofillers addition on the interlaminar performance of CFRP composites: An assessment of cryo-conditioning. Materials Today: Proceedings, 2020, 33, 5070-5075.	1.8	11
42	Temperature and loading speed sensitivity of glass/carbon interâ€ply hybrid polymer composites on tensile loading. Journal of Applied Polymer Science, 2021, 138, 49928.	2.6	11
43	Effect of CNT addition on cure kinetics of glass fiber/epoxy composite. IOP Conference Series: Materials Science and Engineering, 2018, 338, 012003.	0.6	10
44	Enhancement of mechanical properties of glass fiber reinforced vinyl ester composites by embedding multi-walled carbon nanotubes through solution processing technique. Materials Today: Proceedings, 2020, 27, 1045-1050.	1.8	10
45	Effects of fiber surface grafting by functionalized carbon nanotubes on the interfacial durability during cryogenic testing and conditioning of CFRP composites. Journal of Applied Polymer Science, 2021, 138, 51231.	2.6	10
46	Effect of ultraviolet radiations on interlaminar shear strength and thermal properties of glass fiber/epoxy composites. Materials Today: Proceedings, 2021, 43, 524-529.	1.8	9
47	An assessment of mechanical behavior of glass fiber/epoxy composites with secondary short carbon fiber reinforcements. Journal of Applied Polymer Science, 2022, 139, .	2.6	9
48	Water absorption behavior and residual strength assessment of glass/epoxy and glass-carbon/epoxy hybrid composite. IOP Conference Series: Materials Science and Engineering, 2016, 115, 012029.	0.6	8
49	Development of advanced fiberâ€reinforced polymer composites by polymer hybridization technique: Emphasis on cure kinetics, mechanical, and thermomechanical performance. Journal of Applied Polymer Science, 2020, 137, 49318.	2.6	8
50	Effects of Cryogenic Aging on Flexural Behavior of Advanced Inter-ply Hybrid Fiber-Reinforced Polymer Composites. Transactions of the Indian Institute of Metals, 2021, 74, 2171-2183.	1.5	8
51	Mechanical modelling and experimental validation of woven composites. Materials Today: Proceedings, 2020, 27, 2640-2644.	1.8	7
52	Mechanical and thermal performance of recycled glass fiber reinforced epoxy composites embedded with carbon nanotubes. Materials Today: Proceedings, 2020, 33, 5029-5034.	1.8	7
53	Mechanical properties of glass/carbon inter-ply hybrid polymer composites at different in-situ temperatures. Materials Today: Proceedings, 2021, 39, 1192-1197.	1.8	7
54	Mechanical behavior of electrophoretically modified CFRP composites at elevated temperatures: An assessment of the influence of graphene carboxyl bath concentration. Journal of Applied Polymer Science, 2021, 138, 51365.	2.6	7

#	Article	IF	Citations
55	A study of the effect of carbon nanotube/nanoclay binary nanoparticle reinforcement on glass fibre/epoxy composites. Materials Today: Proceedings, 2020, 26, 2026-2031.	1.8	6
56	Effect of severely thermal shocked MWCNT enhanced glass fiber reinforced polymer composite: An emphasis on tensile and thermal responses. IOP Conference Series: Materials Science and Engineering, 2018, 338, 012057.	0.6	5
57	Spherical indentation response of a Ni double gyroid nanolattice. Scripta Materialia, 2020, 188, 64-68.	5.2	5
58	Influence of loading rate on adhesively bonded Tin-glass/epoxy single lap joint. Materials Today: Proceedings, 2020, 26, 1850-1854.	1.8	5
59	Experimental amelioration of flexural behavior under cryogenic conditioning through inter-ply fiber hybridization in FRP composites. Materials Today: Proceedings, 2020, 27, 1618-1624.	1.8	5
60	Mode I interlaminar fracture toughness improvement of the glass/epoxy composite by using multiscale composite approach. Materials Today: Proceedings, 2020, 33, 5328-5333.	1.8	5
61	Strength degradation and fractographic analysis of carbon fiber reinforced polymer composite laminates with square / circular hole using scanning electron microscope micrographs. Journal of Applied Polymer Science, 2021, 138, 49878.	2.6	5
62	A novel study of flexural behavior of short glass fibers as secondary reinforcements in GFRP composite. Materials Today: Proceedings, 2021, 47, 3370-3370.	1.8	5
63	HighÂStrain-Rate Through-Thickness Compression Testing of Symmetrical Inter-ply Hybrid Polymer Composites Reinforced with Carbon/Glass and Carbon/Kevlar Fibers. Transactions of the Indian Institute of Metals, 2022, 75, 2507-2516.	1.5	5
64	In-Situ Elevated Temperature Interlaminar Shear Response and Thermal Behavior of Graphene Nanoplatelet Reinforced Kevlar/Epoxy Laminated Composites. Polymer Science - Series B, 2022, 64, 553-566.	0.8	5
65	Multimaterial laminated composites: An assessment of effect of stacking sequence on flexural response. Materials Today: Proceedings, 2021, 44, 141-145.	1.8	4
66	Assessment of open hole flexural strength and progressive damage mechanism of CFRP composite as a function of stacking sequence. International Journal of Materials and Product Technology, 2021, 62, 80.	0.2	4
67	Effect of cure kinetics and nanomaterials on glass fiber/vinyl ester composites: An assessment on mechanical, thermal and fracture morphology. Materials Today: Proceedings, 2020, 33, 4937-4941.	1.8	4
68	Extrapolation of Mechanical Strengthening Effect in Nanoclay/Epoxy Nanocomposites to Elevated Temperature Environments. Transactions of the Indian Institute of Metals, 2018, 71, 2015-2024.	1.5	3
69	Interlaminar performance of graphene carboxyl modified CFRP composites: Effect of cryogenic conditioning. Materials Today: Proceedings, 2020, 27, 1516-1521.	1.8	3
70	Through-Thickness High Strain Rate Compressive Response of Glass/Epoxy-Laminated Composites Embedded with Randomly Oriented Discontinuous Carbon Fibers. Lecture Notes in Mechanical Engineering, 2022, , 103-111.	0.4	3
71	Effect of in-situ temperature variation on mechanical response of glass/vinyl ester composites. Materials Today: Proceedings, 2020, 27, 1142-1146.	1.8	2
72	Effect of severely thermal shocked nano-Al2O3 filled glass fiber reinforced polymeric composites: An assessment on tensile, thermal and morphological behaviour. Materials Today: Proceedings, 2020, 33, 5521-5525.	1.8	2

#	Article	lF	CITATIONS
73	Evaluation of mechanical behaviour of graphene oxide grafted CFRP composites: a comparison of anodic and cathodic EPD. Advances in Materials and Processing Technologies, 2022, 8, 1395-1403.	1.4	2
74	Synergetic Impact of Carbon Nanotube and/or Graphene Reinforcement on the Mechanical Performance of Glass Fiber/Epoxy Composite. Materials Science Forum, 0, 978, 284-290.	0.3	2
75	Effect of Post-Cathodic EPD Acetone Washing of Carbon Fibres on the Mechanical Properties of Graphene Carboxyl Embedded CFRP Composites. Transactions of the Indian Institute of Metals, 2022, 75, 1789-1795.	1.5	2
76	Investigation of adhesively bonded multi-material joints: An assessment on joint efficiency and fracture morphology. Materials Today: Proceedings, 2020, 27, 1180-1185.	1.8	1
77	Effect of 1D carbon nano- tube and fiber reinforcement on the long-term creep performance of glass fiber/epoxy composite using the time-temperature superposition principle. Materials Today: Proceedings, 2021, , .	1.8	1
78	Functionalization of Carbon Nanotube., 2021,, 1-41.		1
79	Thermal behaviour and Vickers indentation response of random discontinuous Carbon/Epoxy composites with Nano-Alumina fillers. Materials Today: Proceedings, 2022, 62, 5911-5916.	1.8	1
80	Effect of MWCNT/Nanosilica reinforcement on the mechanical and thermal behaviour of polymer composite. Materials Today: Proceedings, 2022, 62, 6087-6090.	1.8	1
81	Effect of Bath Concentration during Electrophoretic Deposition on the Interfacial Behaviour of Hybrid CFRP Composites. Materials Science Forum, 0, 978, 304-310.	0.3	О
82	An Assessment of Mechanical Performance of CNF Modified Glass Fiber/Epoxy Composites under Elevated Temperatures. Materials Science Forum, 0, 978, 311-315.	0.3	0
83	Effect of in-situ temperature and loading rate on the out-of-plane performance of carbon nanofiber embedded glass fiber / epoxy composite. Materials Today: Proceedings, 2022, , .	1.8	O