Sandro W Lubis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/773308/publications.pdf Version: 2024-02-01

SANDRO WILLIBIS

#	Article	IF	CITATIONS
1	Large-Scale Meteorological Drivers of the Extreme Precipitation Event and Devastating Floods of Early-February 2021 in Semarang, Central Java, Indonesia. Atmosphere, 2022, 13, 1092.	2.3	10
2	Coupled stratosphere-troposphere-Atlantic multidecadal oscillation and its importance for near-future climate projection. Npj Climate and Atmospheric Science, 2022, 5, .	6.8	18
3	Impacts of the Madden–Julian oscillation on precipitation extremes in Indonesia. International Journal of Climatology, 2021, 41, 1970-1984.	3.5	39
4	Impacts of convectively coupled equatorial waves on rainfall extremes in Java, Indonesia. International Journal of Climatology, 2021, 41, 2418-2440.	3.5	31
5	An Eddy–Zonal Flow Feedback Model for Propagating Annular Modes. Journals of the Atmospheric Sciences, 2021, 78, 249-267.	1.7	4
6	A Synoptic View of the Onset of the Mid-Latitude QBO Signal. Journals of the Atmospheric Sciences, 2021, , .	1.7	3
7	Why Are Stratospheric Sudden Warmings Sudden (and Intermittent)?. Journals of the Atmospheric Sciences, 2020, 77, 943-964.	1.7	11
8	Vertical structure of Convectively Coupled Equatorial Waves (CCEWs) during Boreal Summer and Winter. IOP Conference Series: Earth and Environmental Science, 2019, 284, 012010.	0.3	2
9	Influence of the Indian Ocean Dipole (IOD) on Convectively Coupled Kelvin and Mixed Rossby-Gravity Waves. IOP Conference Series: Earth and Environmental Science, 2019, 284, 012012.	0.3	5
10	Unprecedented Quasi-Biennial Oscillation (QBO) disruption in 2015-2016: Implications for tropical waves and ozone. IOP Conference Series: Earth and Environmental Science, 2019, 284, 012016.	0.3	3
11	Key Role of the Ocean Western Boundary currents in shaping the Northern Hemisphere climate. Scientific Reports, 2019, 9, 3014.	3.3	20
12	On the interpretation of EOF analysis of the convectively coupled equatorial waves. , 2019, , .		1
13	Downward Wave Coupling between the Stratosphere and Troposphere under Future Anthropogenic Climate Change. Journal of Climate, 2018, 31, 4135-4155.	3.2	7
14	Role of Finite-Amplitude Rossby Waves and Nonconservative Processes in Downward Migration of Extratropical Flow Anomalies. Journals of the Atmospheric Sciences, 2018, 75, 1385-1401.	1.7	19
15	Seasonal variability of convectively coupled equatorial waves (CCEWs) in recent high-top CMIP5 models. IOP Conference Series: Earth and Environmental Science, 2018, 149, 012030.	0.3	2
16	Activity of convective coupled equatorial wave in tropical Tropopause layer in reanalysis and high-top CMIP5 models. IOP Conference Series: Earth and Environmental Science, 2018, 149, 012012.	0.3	2
17	Influence of QBO on stratospheric Kelvin and Mixed Rossby gravity waves in high-top CMIP5 models. IOP Conference Series: Earth and Environmental Science, 2018, 149, 012011.	0.3	3
18	Role of Finite-Amplitude Eddies and Mixing in the Life Cycle of Stratospheric Sudden Warmings. Journals of the Atmospheric Sciences, 2018, 75, 3987-4003.	1.7	14

SANDRO W LUBIS

#	Article	IF	CITATIONS
19	Radiative effects of ozone waves on the Northern Hemisphere polar vortex and its modulation by the QBO. Atmospheric Chemistry and Physics, 2018, 18, 6637-6659.	4.9	19
20	How does downward planetary wave coupling affect polar stratospheric ozone in the Arctic winter stratosphere?. Atmospheric Chemistry and Physics, 2017, 17, 2437-2458.	4.9	29
21	Impact of ENSO on seasonal variations of Kelvin Waves and mixed Rossby-Gravity Waves. IOP Conference Series: Earth and Environmental Science, 2017, 54, 012035.	0.3	8
22	Characteristics of Kelvin waves and Mixed Rossby-Gravity waves in opposite QBO phases. IOP Conference Series: Earth and Environmental Science, 2017, 54, 012032.	0.3	5
23	Impact of Madden-Julian Oscillation (MJO) on global distribution of total water vapor and column ozone. IOP Conference Series: Earth and Environmental Science, 2017, 54, 012034.	0.3	6
24	Impact of the Antarctic Ozone Hole on the Vertical Coupling of the Stratosphere–Mesosphere–Lower Thermosphere System. Journals of the Atmospheric Sciences, 2016, 73, 2509-2528.	1.7	16
25	Analysis of the Equatorial Lower Stratosphere Quasi-Biennial Oscillation (QBO) Using ECMWF-Interim Reanalysis Data Set. IOP Conference Series: Earth and Environmental Science, 2016, 31, 012032.	0.3	2
26	Influence of the Quasi-Biennial Oscillation and Sea Surface Temperature Variability on Downward Wave Coupling in the Northern Hemisphere. Journals of the Atmospheric Sciences, 2016, 73, 1943-1965.	1.7	35
27	The modulating influence of convectively coupled equatorial waves (CCEWs) on the variability of tropical precipitation. International Journal of Climatology, 2015, 35, 1465-1483.	3.5	64