
Jiandong Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7733048/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A flux-adaptable pump-free microfluidics-based self-contained platform for multiplex cancer biomarker detection. Lab on A Chip, 2021, 21, 143-153.	6.0	53
2	Emerging optofluidic technologies for biodiagnostic applications. View, 2021, 2, 20200035.	5.3	9
3	Boron rich nanotube drug carrier system is suited for boron neutron capture therapy. Scientific Reports, 2021, 11, 15520.	3.3	6
4	Generation of flow and droplets with an ultra-long-range linear concentration gradient. Lab on A Chip, 2021, 21, 4390-4400.	6.0	21
5	A self-quenching fluorescence probe-mediated exponential isothermal amplification system for highly sensitive and specific detection of microRNAs. Chemical Communications, 2021, 57, 12599-12602.	4.1	5
6	Effect of Manitoba-Grown Red-Osier Dogwood Extracts on Recovering Caco-2 Cells from H2O2-Induced Oxidative Damage. Antioxidants, 2019, 8, 250.	5.1	20
7	Paper-Based Microfluidic Device (DON-Chip) for Rapid and Low-Cost Deoxynivalenol Quantification in Food, Feed, and Feed Ingredients. ACS Sensors, 2019, 4, 3072-3079.	7.8	36
8	Fully-functional semi-automated microfluidic immunoassay platform for quantitation of multiple samples. Sensors and Actuators B: Chemical, 2019, 300, 127017.	7.8	21
9	Sputum from chronic obstructive pulmonary disease patients inhibits T cell migration in a microfluidic device. Annals of the New York Academy of Sciences, 2019, 1445, 52-61.	3.8	8
10	A new tool to attack biofilms: driving magnetic iron-oxide nanoparticles to disrupt the matrix. Nanoscale, 2019, 11, 6905-6915.	5.6	68
11	Recent development of portable imaging platforms for cell-based assays. Biosensors and Bioelectronics, 2019, 124-125, 150-160.	10.1	30
12	Lab-on-chip technology for chronic disease diagnosis. Npj Digital Medicine, 2018, 1, 7.	10.9	99
13	Mkit: A cell migration assay based on microfluidic device and smartphone. Biosensors and Bioelectronics, 2018, 99, 259-267.	10.1	27
14	A radial microfluidic platform for higher throughput chemotaxis studies with individual gradient control. Lab on A Chip, 2018, 18, 3855-3864.	6.0	34
15	A Passive Mixing Microfluidic Urinary Albumin Chip for Chronic Kidney Disease Assessment. ACS Sensors, 2018, 3, 2191-2197.	7.8	25
16	The effects of activin A on the migration of human breast cancer cells and neutrophils and their migratory interaction. Experimental Cell Research, 2017, 357, 107-115.	2.6	21
17	Fibroblast growth factor 23 weakens chemotaxis of human blood neutrophils in microfluidic devices. Scientific Reports, 2017, 7, 3100.	3.3	21
18	Collective cell migration has distinct directionality and speed dynamics. Cellular and Molecular Life Sciences, 2017, 74, 3841-3850.	5.4	33

Jiandong Wu

#	Article	IF	CITATIONS
19	A dual-docking microfluidic cell migration assay (D ² -Chip) for testing neutrophil chemotaxis and the memory effect. Integrative Biology (United Kingdom), 2017, 9, 303-312.	1.3	27
20	An All-on-chip Method for Rapid Neutrophil Chemotaxis Analysis Directly from a Drop of Blood. Journal of Visualized Experiments, 2017, , .	0.3	7
21	Lab-on-a-Chip Platforms for Detection of Cardiovascular Disease and Cancer Biomarkers. Sensors, 2017, 17, 2934.	3.8	60
22	Rapid and Low-Cost CRP Measurement by Integrating a Paper-Based Microfluidic Immunoassay with Smartphone (CRP-Chip). Sensors, 2017, 17, 684.	3.8	43
23	An all-on-chip method for testing neutrophil chemotaxis induced by fMLP and COPD patient's sputum. Technology, 2016, 04, 104-109.	1.4	17
24	Neutrophil migration under spatially-varying chemoattractant gradient profiles. Biomedical Microdevices, 2015, 17, 9963.	2.8	13
25	Analysis of CCR7 mediated T cell transfectant migration using a microfluidic gradient generator. Journal of Immunological Methods, 2015, 419, 9-17.	1.4	6
26	A Microfluidic Platform for Evaluating Neutrophil Chemotaxis Induced by Sputum from COPD Patients. PLoS ONE, 2015, 10, e0126523.	2.5	28
27	Recent Developments in Electrotaxis Assays. Advances in Wound Care, 2014, 3, 149-155.	5.1	14
28	A compact microfluidic system for cell migration studies. Biomedical Microdevices, 2014, 16, 521-528.	2.8	14
29	Recent developments in microfluidics-based chemotaxis studies. Lab on A Chip, 2013, 13, 2484.	6.0	126
30	Microengineered tools for studying cell migration in electric fields. , 0, , 110-127.		0
31	A triple-unit microfluidic device (D3-chip) for cell migration research. Protocol Exchange, 0, , .	0.3	2