Artem Melman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7732882/publications.pdf

Version: 2024-02-01

623734 477307 38 897 14 29 h-index citations g-index papers 42 42 42 889 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Photodegradable Iron(III) Cross-Linked Alginate Gels. Biomacromolecules, 2012, 13, 2465-2471.	5.4	145
2	Electrochemically Controlled Drug-Mimicking Protein Release from Iron-Alginate Thin-Films Associated with an Electrode. ACS Applied Materials & Samp; Interfaces, 2012, 4, 466-475.	8.0	124
3	Substance Release Triggered by Biomolecular Signals in Bioelectronic Systems. Journal of Physical Chemistry Letters, 2015, 6, 1340-1347.	4.6	74
4	Fabrication of patterned calcium cross-linked alginate hydrogel films and coatings through reductive cation exchange. Carbohydrate Polymers, 2015, 131, 57-64.	10.2	73
5	lron(<scp>iii</scp>)-cross-linked alginate hydrogels: a critical review. Materials Advances, 2022, 3, 1849-1873.	5.4	48
6	Reductive Mobilization of Iron from Intact Ferritin: Mechanisms and Physiological Implication. Pharmaceuticals, 2018, 11, 120.	3.8	44
7	DNA Release from Fe ³⁺ â€Crossâ€Linked Alginate Films Triggered by Logically Processed Biomolecular Signals: Integration of Biomolecular Computing and Actuation. ChemPhysChem, 2017, 18, 1811-1821.	2.1	37
8	Complexation of ferrous ions by ferrozine, 2,2′-bipyridine and 1,10-phenanthroline: Implication for the quantification of iron in biological systems. Journal of Inorganic Biochemistry, 2021, 220, 111460.	3.5	24
9	Photochemical Patterning of Ionically Cross-Linked Hydrogels. Processes, 2013, 1, 153-166.	2.8	22
10	Glucoseâ€Triggered Insulin Release from Fe ³⁺ â€Crossâ€linked Alginate Hydrogel: Experimental Study and Theoretical Modeling. ChemPhysChem, 2017, 18, 1541-1551.	2.1	22
11	Controlling Porosity of Calcium Alginate Hydrogels by Interpenetrating Polyvinyl Alcohol–Diboronate Polymer Network. ACS Applied Polymer Materials, 2021, 3, 1499-1507.	4.4	22
12	Electrochemically stimulated molecule release associated with interfacial pH changes. Chemical Communications, 2019, 55, 7856-7859.	4.1	20
13	Design of a methotrexate-controlled chemical dimerization system and its use in bio-electronic devices. Nature Communications, 2021, 12, 7137.	12.8	17
14	Iron mineralization and core dissociation in mammalian homopolymeric H-ferritin: Current understanding and future perspectives. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129700.	2.4	16
15	Electrochemically Generated Interfacial pH Change: Application to Signalâ€Triggered Molecule Release. ChemElectroChem, 2020, 7, 3386-3403.	3.4	16
16	Synthesis of Enantiomerically Pure (<i>S</i>)-Methanocarbaribo Uracil Nucleoside Derivatives for Use as Antiviral Agents and P2Y Receptor Ligands. Journal of Organic Chemistry, 2008, 73, 8085-8088.	3.2	14
17	Molecular Release Associated with Interfacial pH Change Stimulated by a Small Electrical Potential Applied. ChemElectroChem, 2020, 7, 59-63.	3.4	14
18	Switchable Biocatalytic Reactions Controlled by Interfacial pH Changes Produced by Orthogonal Biocatalytic Processes. ACS Applied Materials & Eamp; Interfaces, 2021, 13, 33830-33839.	8.0	14

#	Article	IF	Citations
19	Circular Permutated PQQâ€Glucose Dehydrogenase as an Ultrasensitive Electrochemical Biosensor. Angewandte Chemie - International Edition, 2022, 61, .	13.8	14
20	Effect of chaotropes on the kinetics of iron release from ferritin by flavin nucleotides. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 3257-3262.	2.4	13
21	<i>Operando</i> Local pH Mapping of Electrochemical and Bioelectrochemical Reactions Occurring at an Electrode Surface: Effect of the Buffer Concentration. ChemElectroChem, 2021, 8, 3923-3935.	3.4	13
22	Electrochemical control of the catalytic activity of immobilized enzymes. Chemical Communications, 2020, 56, 13800-13803.	4.1	11
23	Enzyme Induced Formation of Monodisperse Hydrogel Nanoparticles Tunable in Size. Chemistry of Materials, 2015, 27, 2557-2565.	6.7	10
24	Boolean Logic Networks Mimicked with Chimeric Enzymes Activated/Inhibited by Several Input Signals. ChemPhysChem, 2020, 21, 589-593.	2.1	10
25	Nanozyme-Triggered DNA Release from Alginate Films. ACS Applied Bio Materials, 2020, 3, 3741-3750.	4.6	10
26	Self-powered molecule release systems activated with chemical signals processed through reconfigurable Implication or Inhibition Boolean logic gates. Bioelectrochemistry, 2021, 138, 107735.	4.6	9
27	Sensitive Analysis of Nitroguanidine in Aqueous and Soil Matrices by LC-MS. Analytical Chemistry, 2017, 89, 9990-9996.	6.5	8
28	Connecting Artificial Proteolytic and Electrochemical Signaling Systems with Caged Messenger Peptides. ACS Sensors, 2021, 6, 3596-3603.	7.8	8
29	Quantum Chemical Approach for Determining Degradation Pathways of Phenol by Electrical Discharge Plasmas. Plasma Chemistry and Plasma Processing, 2017, 37, 5-28.	2.4	7
30	Electrochemical Signalâ€triggered Release of Biomolecules Functionalized with Hisâ€tag Units. Electroanalysis, 2019, 31, 2274-2282.	2.9	7
31	"Smart―Delivery of Monoclonal Antibodies from a Magnetic Responsive Microgel Nanocomposite. ACS Applied Bio Materials, 2021, 4, 8487-8497.	4.6	7
32	Electrochemically produced local pH changes stimulating (bio)molecule release from pH-switchable electrode-immobilized avidin–biotin systems. Physical Chemistry Chemical Physics, 2022, 24, 6410-6414.	2.8	7
33	Magneto-Controlled Enzyme Activity with Locally Produced pH Changes. Journal of Physical Chemistry Letters, 2021, 12, 2523-2527.	4.6	6
34	Biomolecule Release from Alginate Composite Hydrogels Triggered by Logically Processed Signals. ChemPhysChem, 2021, 22, 1967-1975.	2.1	6
35	Reconfigurable Implication and Inhibition Boolean logic gates based on NAD ⁺ â€dependent enzymes: Application to signalâ€controlled biofuel cells and molecule release. Electrochemical Science Advances, 2022, 2, e2100008.	2.8	1
36	A magneto-controlled biocatalytic cascade with a fluorescent output. Organic and Biomolecular Chemistry, 2022, 20, 1869-1873.	2.8	1

ARTEM MELMAN

#	Article	IF	CITATIONS
37	Selective Derivatization of Hexahistidine-Tagged Recombinant Proteins. Advances in Experimental Medicine and Biology, 2019, 1140, 237-250.	1.6	O
38	Boolean Logic Networks Mimicked with Chimeric Enzymes Activated/Inhibited by Several Input Signals. ChemPhysChem, 2020, 21, 578-578.	2.1	0