Ryota Yamasaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7732556/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quick and environmentally friendly sterilization process of dental instruments by radical vapor reactor. Process Biochemistry, 2022, 113, 22-26.	3.7	0
2	Mechanisms involved in suppression of osteoclast supportive activity by transforming growth factor-β1 via the ubiquitin-proteasome system. PLoS ONE, 2022, 17, e0262612.	2.5	4
3	Schizophyllum commune β-glucan: Effect on interleukin-10 expression induced by lipopolysaccharide from periodontopathic bacteria. Carbohydrate Polymers, 2021, 253, 117285.	10.2	16
4	Dectinâ€1–mediated suppression of RANKLâ€induced osteoclastogenesis by glucan from baker's yeast. Journal of Cellular Physiology, 2021, 236, 5098-5107.	4.1	4
5	Biological Effects of \hat{I}^2 -Glucans on Osteoclastogenesis. Molecules, 2021, 26, 1982.	3.8	3
6	Magnesium Hydroxide Nanoparticles Kill Exponentially Growing and Persister Escherichia coli Cells by Causing Physical Damage. Nanomaterials, 2021, 11, 1584.	4.1	11
7	<i>Escherichia coli</i> cryptic prophages sense nutrients to influence persister cell resuscitation. Environmental Microbiology, 2021, 23, 7245-7254.	3.8	9
8	Persister Cells Resuscitate Using Membrane Sensors that Activate Chemotaxis, Lower cAMP Levels, and Revive Ribosomes. IScience, 2020, 23, 100792.	4.1	56
9	Rhamnolipids and surfactin inhibit the growth or formation of oral bacterial biofilm. BMC Microbiology, 2020, 20, 358.	3.3	12
10	Reactive Oxygen Species Penetrate Persister Cell Membranes of Escherichia coli for Effective Cell Killing. Frontiers in Cellular and Infection Microbiology, 2020, 10, 496.	3.9	15
11	Interkingdom signal indole inhibits <i>Pseudomonas aeruginosa</i> persister cell waking. Journal of Applied Microbiology, 2019, 127, 1768-1775.	3.1	31
12	Identification of a potent indigoid persister antimicrobial by screening dormant cells. Biotechnology and Bioengineering, 2019, 116, 2263-2274.	3.3	24
13	σ ₅₄ â€Dependent regulator DVU2956 switches <i>Desulfovibrio vulgaris</i> from biofilm formation to planktonic growth and regulates hydrogen sulfide production. Environmental Microbiology, 2019, 21, 3564-3576.	3.8	18
14	Ribosome dependence of persister cell formation and resuscitation. Journal of Microbiology, 2019, 57, 213-219.	2.8	38
15	Highly Selective Methane Production Through Electrochemical CO2 reduction by Electrolytically Plated Cu-Co Electrode. Electrocatalysis, 2019, 10, 29-34.	3.0	16
16	Viable but non ulturable and persistence describe the same bacterial stress state. Environmental Microbiology, 2018, 20, 2038-2048.	3.8	175
17	Current state and perspectives in hydrogen production by Escherichia coli: roles of hydrogenases in glucose or glycerol metabolism. Applied Microbiology and Biotechnology, 2018, 102, 2041-2050.	3.6	26
18	Single cell observations show persister cells wake based on ribosome content. Environmental Microbiology, 2018, 20, 2085-2098.	3.8	94

RYOTA YAMASAKI

#	Article	IF	CITATIONS
19	Aromatic hydrocarbon selectivity as a function of CaO basicity and aging during CaO-catalyzed PET pyrolysis using tandem µ-reactor-GC/MS. Chemical Engineering Journal, 2018, 332, 169-173.	12.7	57
20	Excitation of H ₂ O at the plasma/water interface by UV irradiation for the elevation of ammonia production. Green Chemistry, 2018, 20, 627-633.	9.0	51
21	Electrodeposited Cu-Sn Alloy for Electrochemical CO2 Reduction to CO/HCOOâ^'. Electrocatalysis, 2018, 9, 323-332.	3.0	76
22	Green Surface Cleaning in a Radical Vapor Reactor to Remove Organic Fouling on a Substrate. Electrochemistry, 2018, 86, 355-362.	1.4	4
23	Electron carriers increase electricity production in methane microbial fuel cells that reverse methanogenesis. Biotechnology for Biofuels, 2018, 11, 211.	6.2	30
24	Sustainable process for functional group introduction onto HOPG by exposing OH and 1O2 using a radical vapor reactor (RVR) without any chemical reagents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 522, 328-334.	4.7	4
25	Non-catalyzed one-step synthesis of ammonia from atmospheric air and water. Green Chemistry, 2016, 18, 4536-4541.	9.0	73
26	Formation Mechanism of Flattened Top HFBI Domical Droplets. Journal of Physical Chemistry B, 2016, 120, 3699-3704.	2.6	9
27	Flattened-Top Domical Water Drops Formed through Self-Organization of Hydrophobin Membranes: A Structural and Mechanistic Study Using Atomic Force Microscopy. ACS Nano, 2016, 10, 81-87.	14.6	18
28	Molecular Carrier-Gox Fusion Protein for Electro-Catalytic Reaction. ECS Meeting Abstracts, 2016, , .	0.0	0
29	Structural and Electrochemical Properties of Self-organized HFBI Membranes on Different Types of Substrates. Electrochemistry, 2015, 83, 969-973.	1.4	1
30	Nano-structure Control of Leadframe Surface to Achieve Robust Juncture with Epoxy Resin. IEEJ Transactions on Sensors and Micromachines, 2015, 135, 129-134.	0.1	2
31	Electrochemical properties of honeycomb-like structured HFBI self-organized membranes on HOPG electrodes. Colloids and Surfaces B: Biointerfaces, 2014, 123, 803-808.	5.0	8
32	Solid-support immobilization of a "swing―fusion protein for enhanced glucose oxidase catalytic activity. Colloids and Surfaces B: Biointerfaces, 2013, 112, 186-191.	5.0	27