Noel J Buckley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7732440/publications.pdf

Version: 2024-02-01

111 papers	10,190 citations	47006 47 h-index	99 g-index
115	115	115	8555
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Replication study of plasma proteins relating to Alzheimer's pathology. Alzheimer's and Dementia, 2021, 17, 1452-1464.	0.8	13
2	High Blood Pressure and Risk of Dementia: A Two-Sample Mendelian Randomization Study in the UK Biobank. Biological Psychiatry, 2021, 89, 817-824.	1.3	35
3	Plasma Proteomic Biomarkers Relating to Alzheimer's Disease: A Meta-Analysis Based on Our Own Studies. Frontiers in Aging Neuroscience, 2021, 13, 712545.	3.4	16
4	Identification and validation of plasma proteome signatures associated with MRI measurements in healthy individuals. Alzheimer's and Dementia, $2021,17,.$	0.8	0
5	Dickkopf-1 Overexpression in vitro Nominates Candidate Blood Biomarkers Relating to Alzheimer's Disease Pathology. Journal of Alzheimer's Disease, 2020, 77, 1353-1368.	2.6	7
6	Identification of plasma proteome signatures associated with ATN framework using SOMAscan. Alzheimer's and Dementia, 2020, 16, e036954.	0.8	1
7	CRISPR/Cas9 genome editing of CLU to examine clusterin's contribution to neurodegeneration and Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e040292.	0.8	O
8	Validation of Plasma Proteomic Biomarkers Relating to Brain Amyloid Burden in the EMIF-Alzheimer's Disease Multimodal Biomarker Discovery Cohort. Journal of Alzheimer's Disease, 2020, 74, 213-225.	2.6	13
9	î"9-tetrahydrocannabinol and 2-AG decreases neurite outgrowth and differentially affects ERK1/2 and Akt signaling in hiPSC-derived cortical neurons. Molecular and Cellular Neurosciences, 2020, 103, 103463.	2.2	24
10	Loss of Cln5 leads to altered Gad1 expression and deficits in interneuron development in mice. Human Molecular Genetics, 2019, 28, 3309-3322.	2.9	9
11	Discovery and validation of plasma proteomic biomarkers relating to brain amyloid burden by SOMAscan assay. Alzheimer's and Dementia, 2019, 15, 1478-1488.	0.8	46
12	Clusterin in Alzheimer's Disease: Mechanisms, Genetics, and Lessons From Other Pathologies. Frontiers in Neuroscience, 2019, 13, 164.	2.8	221
13	Repressor element 1–silencing transcription factor drives the development of chronic pain states. Pain, 2019, 160, 2398-2408.	4.2	26
14	Transcriptional and epigenetic mechanisms underlying astrocyte identity. Progress in Neurobiology, 2019, 174, 36-52.	5.7	26
15	Convergent molecular defects underpin diverse neurodegenerative diseases. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 962-969.	1.9	19
16	Clusterin Is Required for Î ² -Amyloid Toxicity in Human iPSC-Derived Neurons. Frontiers in Neuroscience, 2018, 12, 504.	2.8	39
17	Prediction of Chromatin Accessibility in Gene-Regulatory Regions from Transcriptomics Data. Scientific Reports, 2017, 7, 4660.	3.3	6
18	A Role for RE-1-Silencing Transcription Factor in Embryonic Stem Cells Cardiac Lineage Specification. Stem Cells, 2016, 34, 860-872.	3.2	7

#	Article	IF	Citations
19	MiR-375 is Essential for Human Spinal Motor Neuron Development and May Be Involved in Motor Neuron Degeneration. Stem Cells, 2016, 34, 124-134.	3.2	64
20	The Neurogenic Potential of Astrocytes Is Regulated by Inflammatory Signals. Molecular Neurobiology, 2016, 53, 3724-3739.	4.0	36
21	RE1 silencing transcription factor/neuronâ€restrictive silencing factor regulates expansion of adult mouse subventricular zoneâ€derived neural stem/progenitor cells in vitro. Journal of Neuroscience Research, 2015, 93, Spc1.	2.9	0
22	Quantifying barcodes of dendritic spines using entropy-based metrics. Scientific Reports, 2015, 5, 14622.	3.3	7
23	RE1 silencing transcription factor/neuronâ€restrictive silencing factor regulates expansion of adult mouse subventricular zoneâ€derived neural stem/progenitor cells in vitro. Journal of Neuroscience Research, 2015, 93, 1203-1214.	2.9	13
24	Ascl1 Coordinately Regulates Gene Expression and the Chromatin Landscape during Neurogenesis. Cell Reports, 2015, 10, 1544-1556.	6.4	169
25	Concise Review: A Population Shift View of Cellular Reprogramming. Stem Cells, 2014, 32, 1367-1372.	3.2	17
26	An epigenetic signature of developmental potential in neural stem cells and early neurons. Stem Cells, 2013, 31, 1868-1880.	3.2	41
27	Binding of the repressor complex RESTâ€ <scp>mSIN</scp> 3b by small molecules restores neuronal gene transcription in Huntington's disease models. Journal of Neurochemistry, 2013, 127, 22-35.	3.9	44
28	In vivo delivery of DN:REST improves transcriptional changes of REST-regulated genes in HD mice. Gene Therapy, 2013, 20, 678-685.	4.5	29
29	HDAC inhibitors attenuate the development of hypersensitivity in models of neuropathic pain. Pain, 2013, 154, 1668-1679.	4.2	135
30	Dysregulation of <scp>REST</scp> â€regulated coding and nonâ€coding <scp>RNA</scp> s in a cellular model of Huntington's disease. Journal of Neurochemistry, 2013, 124, 418-430.	3.9	64
31	Neurodegeneration as an RNA disorder. Progress in Neurobiology, 2012, 99, 293-315.	5.7	52
32	Repressor Element 1 Silencing Transcription Factor Couples Loss of Pluripotency with Neural Induction and Neural Differentiation. Stem Cells, 2012, 30, 425-434.	3.2	34
33	Editorial: Our Top 10 Developments in Stem Cell Biology over the Last 30 Years. Stem Cells, 2012, 30, 2-9.	3.2	29
34	Cross-Regulation between an Alternative Splicing Activator and a Transcription Repressor Controls Neurogenesis. Molecular Cell, 2011, 43, 843-850.	9.7	124
35	Rescue of gene expression by modified REST decoy oligonucleotides in a cellular model of Huntington's disease. Journal of Neurochemistry, 2011, 116, 415-425.	3.9	44
36	New insights into non-coding RNA networks in Huntington's disease. Experimental Neurology, 2011, 231, 191-194.	4.1	7

#	Article	IF	Citations
37	A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets. Genes and Development, 2011, 25, 930-945.	5.9	368
38	The role of REST in transcriptional and epigenetic dysregulation in Huntington's disease. Neurobiology of Disease, 2010, 39, 28-39.	4.4	134
39	Regulation of neural macroRNAs by the transcriptional repressor REST. Rna, 2009, 15, 85-96.	3.5	90
40	Gene Dysregulation in Huntington's Disease: REST, MicroRNAs and Beyond. NeuroMolecular Medicine, 2009, 11, 183-199.	3.4	104
41	Is REST a regulator of pluripotency?. Nature, 2009, 457, E5-E6.	27.8	51
42	Transcriptional dysregulation of coding and non-coding genes in cellular models of Huntington's disease. Biochemical Society Transactions, 2009, 37, 1270-1275.	3.4	59
43	A microRNA-based gene dysregulation pathway in Huntington's disease. Neurobiology of Disease, 2008, 29, 438-445.	4.4	338
44	REST Regulates Distinct Transcriptional Networks in Embryonic and Neural Stem Cells. PLoS Biology, 2008, 6, e256.	5.6	172
45	Rest-Mediated Regulation of Extracellular Matrix Is Crucial for Neural Development. PLoS ONE, 2008, 3, e3656.	2.5	41
46	Widespread Disruption of Repressor Element-1 Silencing Transcription Factor/Neuron-Restrictive Silencer Factor Occupancy at Its Target Genes in Huntington's Disease. Journal of Neuroscience, 2007, 27, 6972-6983.	3.6	257
47	Analysis of transcription, chromatin dynamics and epigenetic changes in neural genes. Progress in Neurobiology, 2007, 83, 195-210.	5.7	8
48	RE1 Silencing Transcription Factor Maintains a Repressive Chromatin Environment in Embryonic Hippocampal Neural Stem Cells. Stem Cells, 2007, 25, 354-363.	3.2	68
49	The transcriptional repressor REST is a critical regulator of the neurosecretory phenotype. Journal of Neurochemistry, 2006, 98, 1828-1840.	3.9	42
50	Regulation and role of REST and REST4 variants in modulation of gene expression in in vivo and in vitro in epilepsy models. Neurobiology of Disease, 2006, 24, 41-52.	4.4	79
51	Identification of the REST regulon reveals extensive transposable element-mediated binding site duplication. Nucleic Acids Research, 2006, 34, 3862-3877.	14.5	121
52	Stimulation of $\widehat{Gl}\pm q$ -coupled M1 muscarinic receptor causes reversible spectrin redistribution mediated by PLC, PKC and ROCK. Journal of Cell Science, 2006, 119, 1528-1536.	2.0	17
53	BRG1 Chromatin Remodeling Activity Is Required for Efficient Chromatin Binding by Repressor Element 1-silencing Transcription Factor (REST) and Facilitates REST-mediated Repression. Journal of Biological Chemistry, 2006, 281, 38974-38980.	3.4	93
54	Genome-wide identification of cis -regulatory sequences controlling blood and endothelial development. Human Molecular Genetics, 2005, 14, 595-601.	2.9	79

#	Article	IF	Citations
55	Distinct Profiles of REST Interactions with Its Target Genes at Different Stages of Neuronal Development. Molecular Biology of the Cell, 2005, 16, 5630-5638.	2.1	157
56	Downregulated REST Transcription Factor Is a Switch Enabling Critical Potassium Channel Expression and Cell Proliferation. Molecular Cell, 2005, 20, 45-52.	9.7	133
57	Transcription of the M1 muscarinic receptor gene in neurons and neuronal progenitors of the embryonic rat forebrain. Journal of Neurochemistry, 2004, 88, 70-77.	3.9	16
58	Distinct RE-1 Silencing Transcription Factor-containing Complexes Interact with Different Target Genes. Journal of Biological Chemistry, 2004, 279, 556-561.	3.4	62
59	Evidence for Inhibition Mediated by Coassembly of GABAA and GABAC Receptor Subunits in Native Central Neurons. Journal of Neuroscience, 2004, 24, 7241-7250.	3.6	85
60	Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10458-10463.	7.1	433
61	Multiple promoters drive tissue-specific expression of the human M2 muscarinic acetylcholine receptor gene. Journal of Neurochemistry, 2004, 91, 88-98.	3.9	10
62	Interaction of the Repressor Element 1-silencing Transcription Factor (REST) with Target Genes. Journal of Molecular Biology, 2003, 334, 863-874.	4.2	51
63	Adenovirus-mediated Gαq-protein antisense transfer in neurons replicates Gαq gene knockout strategies. Neuropharmacology, 2002, 42, 950-957.	4.1	2
64	Involvement of P2X7 receptors in the regulation of neurotransmitter release in the rat hippocampus. Journal of Neurochemistry, 2002, 81, 1196-1211.	3.9	247
65	An ATP-gated ion channel at the cell nucleus. Nature, 2002, 420, 42-42.	27.8	50
66	Neuronal P2X ₇ Receptors Are Targeted to Presynaptic Terminals in the Central and Peripheral Nervous Systems. Journal of Neuroscience, 2001, 21, 7143-7152.	3.6	281
67	The Basic Helix-Loop-Helix Protein, SHARP-1, Represses Transcription by a Histone Deacetylase-dependent and Histone Deacetylase-independent Mechanism. Journal of Biological Chemistry, 2001, 276, 14821-14828.	3.4	32
68	[10] Use of antisense expression plasmids to attenuate G-protein expression in primary neurons. Methods in Enzymology, 2000, 314, 136-148.	1.0	2
69	Transcriptional Repression by the Neuron-Restrictive Silencer Factor (REST/NRSF) is Mediated via the Sin3/Histone Deacetylase complex. Biochemical Society Transactions, 2000, 28, A88-A88.	3.4	1
70	Calcium channel gating and modulation by transmitters depend on cellular compartmentalization. Nature Neuroscience, 2000, 3, 670-678.	14.8	52
71	Muscarinic Inhibition of Calcium Current and M Current in Gαq-Deficient Mice. Journal of Neuroscience, 2000, 20, 3973-3979.	3.6	7 3
72	Bradykinin, But Not Muscarinic, Inhibition of M-Current in Rat Sympathetic Ganglion Neurons Involves Phospholipase C-Î ² 4. Journal of Neuroscience, 2000, 20, RC105-RC105.	3.6	26

#	Article	IF	Citations
73	Transcriptional Repression by Neuron-Restrictive Silencer Factor Is Mediated via the Sin3-Histone Deacetylase Complex. Molecular and Cellular Biology, 2000, 20, 2147-2157.	2.3	195
74	$\hat{l}^2\hat{l}^3$ dimers derived from Goand Giproteins contribute different components of adrenergic inhibition of Ca2+channels in rat sympathetic neurones. Journal of Physiology, 1999, 518, 23-36.	2.9	57
75	Repression and activation of muscarinic receptor genes. Life Sciences, 1999, 64, 495-499.	4.3	4
76	Neuronal expression of the rat M1 muscarinic acetylcholine receptor gene is regulated by elements in the first exon. Biochemical Journal, 1999, 340, 475-483.	3.7	12
77	Neuronal expression of the rat M1 muscarinic acetylcholine receptor gene is regulated by elements in the first exon. Biochemical Journal, 1999, 340, 475.	3.7	4
78	On the role of endogenous G-protein $\hat{l}^2\hat{l}^3$ subunits in N-type Ca2+current inhibition by neurotransmitters in rat sympathetic neurones. Journal of Physiology, 1998, 506, 319-329.	2.9	71
79	G-proteins and G-protein subunits mediating cholinergic inhibition of N-type calcium currents in sympathetic neurons. European Journal of Neuroscience, 1998, 10, 1654-1666.	2.6	71
80	The \hat{l}_{\pm} Subunit of GqContributes to Muscarinic Inhibition of the M-Type Potassium Current in Sympathetic Neurons. Journal of Neuroscience, 1998, 18, 4521-4531.	3.6	79
81	Use of Antisense-Generating Plasmids to Probe the Function of Signal Transduction Proteins in Primary Neurons., 1997, 83, 217-226.		9
82	Structure of the m1 Muscarinic Acetylcholine Receptor Gene and Its Promoter. Journal of Biological Chemistry, 1997, 272, 17112-17117.	3.4	35
83	Muscarinic mechanisms in nerve cells. Life Sciences, 1997, 60, 1137-1144.	4.3	93
84	Current Applications in Bioluminescenceâ€"21 September 1995, University of Wales College of Medicine, Cardiff, UK. Luminescence, 1996, 11, 49-54.	0.0	0
85	Neural Specific Expression of the m4 Muscarinic Acetylcholine Receptor Gene Is Mediated by a RE1/NRSE-type Silencing Element. Journal of Biological Chemistry, 1996, 271, 14221-14225.	3.4	80
86	Use of antisense oligodeoxynucleotides and monospecific antisera to inhibit G-protein gene expression in cultured neurons. Biochemical Society Transactions, 1995, 23, 137-141.	3.4	3
87	Structure of the m4 Cholinergic Muscarinic Receptor Gene and Its Promoter. Journal of Biological Chemistry, 1995, 270, 30933-30940.	3.4	36
88	Muscarinic Mâ€eurrent inhibition via G alpha q/11 and alphaâ€adrenoceptor inhibition of Ca2+ current via G alpha o in rat sympathetic neurones Journal of Physiology, 1994, 477, 415-422.	2.9	130
89	The human muscarinic M1 acetylcholine receptor, when expressed in CHO cells, activates and downregulates both $Gq\hat{l}\pm$ and $G11\hat{l}\pm$ equally and non-selectively. FEBS Letters, 1993, 324, 241-245.	2.8	40
90	Visualization of muscarinic m4 mRNA and M4 receptor subtype in rabbit lung. Life Sciences, 1993, 53, 1501-1508.	4.3	40

#	Article	IF	CITATIONS
91	Co-expression of four muscarinic receptor genes by the intrinsic neurons of the rat and guinea-pig heart. Neuroscience, 1993, 56, 1041-1048.	2.3	45
92	Agonist activation of transfected human M1 muscarinic acetylcholine receptors in CHO cells results in down-regulation of both the receptor and the $\hat{l}\pm$ subunit of the G-protein Gq. Biochemical Journal, 1993, 289, 125-131.	3.7	76
93	Enhanced degradation of the phosphoinositidase C-linked guanine-nucleotide-binding protein Gq $\hat{l}\pm/G11~\hat{l}\pm$ following activation of the human M1 muscarinic acetylcholine receptor expressed in CHO cells. Biochemical Journal, 1993, 293, 495-499.	3.7	70
94	Regulation of muscarinic receptor gene expression. Neurochemistry International, 1992, 21, Q16.	3.8	0
95	Essential Molecular Biology, A Practical Approach, Vol. I. Trends in Pharmacological Sciences, 1991, 12, 437-438.	8.7	1
96	Muscarinic Receptor Subtypes. Annual Review of Pharmacology and Toxicology, 1990, 30, 633-673.	9.4	1,182
97	Use of clonal cell lines in the analysis of neurotransmitter receptor mechanisms and function. Biochimica Et Biophysica Acta - Molecular Cell Research, 1990, 1055, 43-53.	4.1	11
98	Gene Probes (Methods in Neurosciences, Vol. 1). Trends in Neurosciences, 1990, 13, 471.	8.6	0
99	Localization of muscarinic receptors on peptide-containing neurones of the guinea pig myenteric plexus in tissue culture. Brain Research, 1988, 445, 152-156.	2.2	7
100	The striatum and cerebral cortex express different muscarinic receptor mRNAs. FEBS Letters, 1988, 230, 90-94.	2.8	84
101	Cloning and expression of the human and rat m5 muscarinic acetylcholine receptor genes. Neuron, 1988, 1, 403-410.	8.1	769
102	Stimulation of arachidonic acid release and inhibition of mitogenesis by cloned genes for muscarinic receptor subtypes stably expressed in A9 L cells Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 8698-8702.	7.1	138
103	Electrophysiological characterization of cloned m1 muscarinic receptors expressed in A9 L cells Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 4056-4060.	7.1	31
104	Identification of a family of muscarinic acetylcholine receptor genes. Science, 1987, 237, 527-532.	12.6	1,421
105	Autoradiographic localisation of muscarinic receptors on guinea pig intracardiac neurones and atrial myocytes in culture. Neuroscience Letters, 1987, 74, 145-150.	2.1	23
106	Autoradiographic localization of peripheral M1 muscarinic receptors using [3H]pirenzepine. Brain Research, 1986, 375, 83-91.	2,2	24
107	The Classification of Receptors for Adenosine and Adenine Nucleotides. , 1985, , 193-212.		41
108	Distribution of muscarinic receptors on cultured myenteric neurons. Brain Research, 1984, 310, 133-137.	2.2	20

NOEL J BUCKLEY

#	Article	IF	CITATION
109	Autoradiographic localisation of muscarinic receptors in guinea-pig intestine: Distribution of high and low affinity agonist binding sites. Brain Research, 1984, 294, 15-22.	2.2	23
110	Autoradiographic demonstration of peripheral adenosine binding sites using [3H]NECA. Brain Research, 1983, 269, 374-377.	2.2	13
111	Regulation of the stem cell epigenome by REST. , 0, , 146-162.		O