
Nicholas C Yoder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7731955/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preclinical Evaluation of IMGC936, a Next-Generation Maytansinoid-based Antibody–drug Conjugate Targeting ADAM9-expressing Tumors. Molecular Cancer Therapeutics, 2022, 21, 1047-1059.	4.1	5
2	Site-Specific Conjugation of the Indolinobenzodiazepine DGN549 to Antibodies Affords Antibody–Drug Conjugates with an Improved Therapeutic Index as Compared with Lysine Conjugation. Bioconjugate Chemistry, 2020, 31, 93-103.	3.6	20
3	Effect of Linker Stereochemistry on the Activity of Indolinobenzodiazepine Containing Antibody–Drug Conjugates (ADCs). ACS Medicinal Chemistry Letters, 2019, 10, 1193-1197.	2.8	8
4	A Case Study Comparing Heterogeneous Lysine- and Site-Specific Cysteine-Conjugated Maytansinoid Antibody-Drug Conjugates (ADCs) Illustrates the Benefits of Lysine Conjugation. Molecular Pharmaceutics, 2019, 16, 3926-3937.	4.6	26
5	A DNA-Interacting Payload Designed to Eliminate Cross-Linking Improves the Therapeutic Index of Antibody–Drug Conjugates (ADCs). Molecular Cancer Therapeutics, 2018, 17, 650-660.	4.1	40
6	A CD123-targeting antibody-drug conjugate, IMGN632, designed to eradicate AML while sparing normal bone marrow cells. Blood Advances, 2018, 2, 848-858.	5.2	125
7	Discovery and Optimization of HKT288, a Cadherin-6–Targeting ADC for the Treatment of Ovarian and Renal Cancers. Cancer Discovery, 2017, 7, 1030-1045.	9.4	40
8	Effects of Drug–Antibody Ratio on Pharmacokinetics, Biodistribution, Efficacy, and Tolerability of Antibody–Maytansinoid Conjugates. Bioconjugate Chemistry, 2017, 28, 1371-1381.	3.6	156
9	Understanding How the Stability of the Thiol-Maleimide Linkage Impacts the Pharmacokinetics of Lysine-Linked Antibody–Maytansinoid Conjugates. Bioconjugate Chemistry, 2016, 27, 1588-1598.	3.6	63
10	Microscale screening of antibody libraries as maytansinoid antibody-drug conjugates. MAbs, 2016, 8, 513-523.	5.2	20
11	IMGN632: A CD123-Targeting Antibody-Drug Conjugate (ADC) with a Novel DNA-Alkylating Payload, Is Highly Active and Prolongs Survival in Acute Myeloid Leukemia (AML) Xenograft Models. Blood, 2016, 128, 2832-2832.	1.4	13
12	The chlamydial OTU domain-containing protein <i>Chla</i> OTU is an early type III secretion effector targeting ubiquitin and NDP52. Cellular Microbiology, 2013, 15, 2064-2079.	2.1	39
13	Catchâ€andâ€Release Probes Applied to Semiâ€Intact Cells Reveal Ubiquitinâ€Specific Protease Expression in <i>Chlamydia trachomatis</i> Infection. ChemBioChem, 2013, 14, 343-352.	2.6	34
14	Preparation of unnatural N-to-N and C-to-C protein fusions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11993-11998.	7.1	119
15	Site-Specific N- and C-Terminal Labeling of a Single Polypeptide Using Sortases of Different Specificity. Journal of the American Chemical Society, 2009, 131, 10800-10801.	13.7	223
16	Structure and Thermotropic phase Behavior of Fluorinated Phospholipid Bilayers: A combined Attenuated Total Reflection FTIR Spectroscopy and Imaging Ellipsometry Study. Journal of Physical Chemistry B, 2008, 112, 8250-8256.	2.6	32
17	Nanoscale Patterning in Mixed Fluorocarbonâ^'Hydrocarbon Phospholipid Bilayers. Journal of the American Chemical Society, 2007, 129, 9037-9043.	13.7	36
18	Selective Proteinâ^'Protein Interactions Driven by a Phenylalanine Interface. Journal of the American Chemical Society. 2006, 128, 188-191.	13.7	20

#	Article	IF	CITATIONS
19	Bioorthogonal noncovalent chemistry: fluorous phases in chemical biology. Current Opinion in Chemical Biology, 2006, 10, 576-583.	6.1	56
20	Fluorinated amino acids in protein design and engineering. Chemical Society Reviews, 2002, 31, 335-341.	38.1	293