
Gregory R Cawthray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7731808/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using activated charcoal to remove substances interfering with the colorimetric assay of inorganic phosphate in plant extracts. Plant and Soil, 2022, 476, 755-764.	1.8	5
2	Strategies to acquire and use phosphorus in phosphorus-impoverished and fire-prone environments. Plant and Soil, 2022, 476, 133-160.	1.8	22
3	No evidence of regulation in root-mediated iron reduction in two Strategy I cluster-rooted Banksia species (Proteaceae). Plant and Soil, 2021, 461, 203-218.	1.8	4
4	AusTraits, a curated plant trait database for the Australian flora. Scientific Data, 2021, 8, 254.	2.4	73
5	Edaphic niche characterization of four Proteaceae reveals unique calcicole physiology linked to hyperâ€endemism of Grevillea thelemanniana. New Phytologist, 2020, 228, 869-883.	3.5	10
6	Widespread occurrence of both metabolic and target-site herbicide resistance mechanisms in <i>Lolium rigidum</i> populations. Pest Management Science, 2016, 72, 255-263.	1.7	77
7	Rhizosphere carboxylates and morphological root traits in pasture legumes and grasses. Plant and Soil, 2016, 402, 77-89.	1.8	38
8	2,4-D resistance in wild radish: reduced herbicide translocation via inhibition of cellular transport. Journal of Experimental Botany, 2016, 67, 3223-3235.	2.4	92
9	Biogenic ethylene promotes seedling emergence from the sediment seed bank in an ephemeral tropical rock pool habitat. Plant and Soil, 2014, 380, 73-87.	1.8	13
10	Herbicide Resistance Endowed by Enhanced Rates of Herbicide Metabolism in Wild Oat (<i>Avena</i> spp.). Weed Science, 2013, 61, 55-62.	0.8	35
11	Proteaceae from severely phosphorusâ€impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorusâ€useâ€efficiency. New Phytologist, 2012, 196, 1098-1108.	3.5	225
12	Soil physical strength rather than excess ethylene reduces root elongation of Eucalyptus seedlings in mechanically impeded sandy soils. Plant Growth Regulation, 2012, 68, 261-270.	1.8	10
13	Variation in morphological and physiological parameters in herbaceous perennial legumes in response to phosphorus supply. Plant and Soil, 2010, 331, 241-255.	1.8	110
14	Summer dormancy and winter growth: root survival strategy in a perennial monocotyledon. New Phytologist, 2009, 183, 1085-1096.	3.5	25
15	Developmental Physiology of Cluster-Root Carboxylate Synthesis and Exudation in Harsh Hakea. Expression of Phosphoenolpyruvate Carboxylase and the Alternative Oxidase. Plant Physiology, 2004, 135, 549-560.	2.3	160
16	Carboxylate concentrations in the rhizosphere of lateral roots of chickpea (Cicer arietinum) increase during plant development, but are not correlated with phosphorus status of soil or plants. New Phytologist, 2004, 162, 745-753.	3.5	74
17	Effects of external phosphorus supply on internal phosphorus concentration and the initiation, growth and exudation of cluster roots in Hakea prostrata R.Br Plant and Soil, 2003, 248, 209-219.	1.8	93
18	Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake. Plant and Soil, 2003, 248, 187-197.	1.8	260

#	Article	IF	CITATIONS
19	An improved reversed-phase liquid chromatographic method for the analysis of low-molecular mass organic acids in plant root exudates. Journal of Chromatography A, 2003, 1011, 233-240.	1.8	199