
Daniela Bertinetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7731666/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	cAMP-Dependent Signaling Pathways as Potential Targets for Inhibition of Plasmodium falciparum Blood Stages. Frontiers in Microbiology, 2021, 12, 684005.	3.5	3
2	Transport Efficiency of Biofunctionalized Magnetic Particles Tailored by Surfactant Concentration. Langmuir, 2021, 37, 8498-8507.	3.5	5
3	Germline and Mosaic Variants in PRKACA and PRKACB Cause a Multiple Congenital Malformation Syndrome. American Journal of Human Genetics, 2020, 107, 977-988.	6.2	33
4	Molecular Basis for Ser/Thr Specificity in PKA Signaling. Cells, 2020, 9, 1548.	4.1	3
5	Binding of the Human 14-3-3 Isoforms to Distinct Sites in the Leucine-Rich Repeat Kinase 2. Frontiers in Neuroscience, 2020, 14, 302.	2.8	41
6	Chemical synthesis and biological activity of novel brominated 7-deazaadenosine-3′,5′-cyclic monophosphate derivatives. Bioorganic and Medicinal Chemistry, 2019, 27, 1704-1713.	3.0	4
7	Investigating PKA-RII specificity using analogs of the PKA:AKAP peptide inhibitor STAD-2. Bioorganic and Medicinal Chemistry, 2018, 26, 1174-1178.	3.0	10
8	New cGMP analogues restrain proliferation and migration of melanoma cells. Oncotarget, 2018, 9, 5301-5320.	1.8	17
9	S-Adenosyl-L-Homocysteine Hydrolase Inhibition by a Synthetic Nicotinamide Cofactor Biomimetic. Frontiers in Microbiology, 2018, 9, 505.	3.5	7
10	A coupled photometric assay for characterization of S-adenosyl-l-homocysteine hydrolases in the physiological hydrolytic direction. New Biotechnology, 2017, 39, 11-17.	4.4	8
11	Divalent metal ions control activity and inhibition of protein kinases. Metallomics, 2017, 9, 1576-1584.	2.4	42
12	A novel c-di-GMP binding domain in glycosyltransferase BgsA is responsible for the synthesis of a mixed-linkage β-glucan. Scientific Reports, 2017, 7, 8997.	3.3	12
13	Defining Aâ€Kinaseâ€Anchoring Protein (AKAP) Specificity for the Protein Kinaseâ€A Subunit RI (PKAâ€RI). ChemBioChem, 2016, 17, 693-697.	2.6	15
14	AKAP18:PKA-RIIα structure reveals crucial anchor points for recognition of regulatory subunits of PKA. Biochemical Journal, 2016, 473, 1881-1894.	3.7	25
15	Utilisation of antibody microarrays for the selection of specific and informative antibodies from recombinant library binders of unknown quality. New Biotechnology, 2016, 33, 574-581.	4.4	10
16	A dual phosphorylation switch controls 14-3-3-dependent cell surface expression of TASK-1. Journal of Cell Science, 2016, 129, 831-42.	2.0	37
17	Application of Synthetic Peptide Arrays To Uncover Cyclic Di-GMP Binding Motifs. Journal of Bacteriology, 2016, 198, 138-146.	2.2	15
18	cAMP-Dependent Protein Kinase and cGMP-Dependent Protein Kinase as Cyclic Nucleotide Effectors. Handbook of Experimental Pharmacology, 2015, 238, 105-122.	1.8	24

DANIELA BERTINETTI

#	Article	IF	CITATIONS
19	The role of a parasite-specific D-site in activation of Plasmodium falciparum cGMP-dependent protein kinase. BMC Pharmacology & Toxicology, 2015, 16, .	2.4	0
20	Divalent Metal Ions Mg ²⁺ and Ca ²⁺ Have Distinct Effects on Protein Kinase A Activity and Regulation. ACS Chemical Biology, 2015, 10, 2303-2315.	3.4	57
21	PKA-Type I Selective Constrained Peptide Disruptors of AKAP Complexes. ACS Chemical Biology, 2015, 10, 1502-1510.	3.4	35
22	Neurochondrin is an atypical RIIα-specific A-kinase anchoring protein. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1667-1675.	2.3	9
23	Crystal Structures of the Carboxyl cCMP Binding Domain of the Plasmodium falciparum cCMP-dependent Protein Kinase Reveal a Novel Capping Triad Crucial for Merozoite Egress. PLoS Pathogens, 2015, 11, e1004639.	4.7	24
24	Structure-Guided Design of Selective Epac1 and Epac2 Agonists. PLoS Biology, 2015, 13, e1002038.	5.6	68
25	Rp-cAMPS Prodrugs Reveal the cAMP Dependence of First-Phase Glucose-Stimulated Insulin Secretion. Molecular Endocrinology, 2015, 29, 988-1005.	3.7	32
26	Parkinson-related LRRK2 mutation R1441C/G/H impairs PKA phosphorylation of LRRK2 and disrupts its interaction with 14-3-3. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E34-43.	7.1	103
27	Cyclic Nucleotide Mapping of Hyperpolarization-Activated Cyclic Nucleotide-Gated (HCN) Channels. ACS Chemical Biology, 2014, 9, 1128-1137.	3.4	27
28	Isoform-Selective Disruption of AKAP-Localized PKA Using Hydrocarbon Stapled Peptides. ACS Chemical Biology, 2014, 9, 635-642.	3.4	75
29	Structural Basis for Cyclic-Nucleotide Selectivity and cGMP-Selective Activation of PKG I. Structure, 2014, 22, 116-124.	3.3	61
30	Crystal structures of the carboxyl cGMP binding domain of plasmodium falciparumcGMP-dependent protein kinase reveals a novel salt bridge crucial for activation. BMC Pharmacology & Toxicology, 2013, 14, .	2.4	0
31	Transforming PKA into PKG – a structure-function approach to understand cyclic nucleotide selectivity. BMC Pharmacology & Toxicology, 2013, 14, .	2.4	1
32	Structures of human PKG reveal cGMP-selectived activation mechanisms. BMC Pharmacology & Toxicology, 2013, 14, .	2.4	0
33	Stimulation of Proglucagon Gene Expression by Human GPR119 in Enteroendocrine L-cell Line GLUTag. Molecular Endocrinology, 2013, 27, 1267-1282.	3.7	29
34	A chemical proteomics approach to identify c-di-GMP binding proteins in Pseudomonas aeruginosa. Journal of Microbiological Methods, 2012, 88, 229-236.	1.6	52
35	Cyclic nucleotides as affinity tools: Phosphorothioate cAMP analogues address specific PKA subproteomes. New Biotechnology, 2011, 28, 294-301.	4.4	18
36	Tetramerization Dynamics of C-terminal Domain Underlies Isoform-specific cAMP Gating in Hyperpolarization-activated Cyclic Nucleotide-gated Channels. Journal of Biological Chemistry, 2011, 286, 44811-44820.	3.4	101

Daniela Bertinetti

#	Article	IF	CITATIONS
37	The Pseudomonas aeruginosa Chemotaxis Methyltransferase CheR1 Impacts on Bacterial Surface Sampling. PLoS ONE, 2011, 6, e18184.	2.5	59
38	A Community Standard Format for the Representation of Protein Affinity Reagents. Molecular and Cellular Proteomics, 2010, 9, 1-10.	3.8	35
39	Chemical tools selectively target components of the PKA system. BMC Chemical Biology, 2009, 9, 3.	1.6	36
40	Biochemical characterization and cellular imaging of a novel, membrane permeable fluorescent cAMP analog. BMC Biochemistry, 2008, 9, 18.	4.4	17
41	Systematic interpretation of cyclic nucleotide binding studies using KinetXBase. Proteomics, 2008, 8, 1212-1220.	2.2	9
42	Biomolecular interaction analysis in functional proteomics. Journal of Neural Transmission, 2006, 113, 1015-1032.	2.8	44
43	Rearrangements in a hydrophobic core region mediate cAMP action in the regulatory subunit of PKA. Biological Chemistry, 2005, 386, 623-631.	2.5	7