Shichao Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7731643/publications.pdf

Version: 2024-02-01

471509 610901 24 952 17 24 citations h-index g-index papers 25 25 25 747 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Loess Landslide Detection Using Object Detection Algorithms in Northwest China. Remote Sensing, 2022, 14, 1182.	4.0	31
2	Simultaneous Prediction of Wheat Yield and Grain Protein Content Using Multitask Deep Learning from Time-Series Proximal Sensing. Plant Phenomics, 2022, 2022, 9757948.	5.9	28
3	Proximal and remote sensing in plant phenomics: 20 years of progress, challenges, and perspectives. Plant Communications, 2022, 3, 100344.	7.7	31
4	The Development and Evaluation of a Backpack LiDAR System for Accurate and Efficient Forest Inventory. IEEE Geoscience and Remote Sensing Letters, 2021, 18, 1660-1664.	3.1	32
5	Lidar sheds new light on plant phenomics for plant breeding and management: Recent advances and future prospects. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 171, 202-223.	11.1	82
6	Lidar Boosts 3D Ecological Observations and Modelings: A Review and Perspective. IEEE Geoscience and Remote Sensing Magazine, 2021, 9, 232-257.	9.6	62
7	Large-scale field phenotyping using backpack LiDAR and CropQuant-3D to measure structural variation in wheat. Plant Physiology, 2021, 187, 716-738.	4.8	17
8	Exploring Seasonal and Circadian Rhythms in Structural Traits of Field Maize from LiDAR Time Series. Plant Phenomics, 2021, 2021, 9895241.	5.9	10
9	A Novel Computational Framework for Precision Diagnosis and Subtype Discovery of Plant With Lesion. Frontiers in Plant Science, 2021, 12, 789630.	3.6	7
10	Estimation of degraded grassland aboveground biomass using machine learning methods from terrestrial laser scanning data. Ecological Indicators, 2020, 108, 105747.	6.3	52
11	Separating the Structural Components of Maize for Field Phenotyping Using Terrestrial LiDAR Data and Deep Convolutional Neural Networks. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 2644-2658.	6.3	55
12	A Novel Framework to Automatically Fuse Multiplatform LiDAR Data in Forest Environments Based on Tree Locations. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 2165-2177.	6.3	26
13	A Framework for Land Use Scenes Classification Based on Landscape Photos. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 6124-6141.	4.9	9
14	ADMorph: A 3D Digital Microfossil Morphology Dataset for Deep Learning. IEEE Access, 2020, 8, 148744-148756.	4.2	16
15	Largeâ€Scale Geographical Variations and Climatic Controls on Crown Architecture Traits. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005306.	3.0	13
16	Application of deep learning in ecological resource research: Theories, methods, and challenges. Science China Earth Sciences, 2020, 63, 1457-1474.	5.2	53
17	Non-destructive estimation of field maize biomass using terrestrial lidar: an evaluation from plot level to individual leaf level. Plant Methods, 2020, 16, 69.	4.3	33
18	Canopy and Terrain Interactions Affecting Snowpack Spatial Patterns in the Sierra Nevada of California. Water Resources Research, 2019, 55, 8721-8739.	4.2	15

SHICHAO JIN

#	Article	IF	CITATION
19	Evaluating maize phenotype dynamics under drought stress using terrestrial lidar. Plant Methods, 2019, 15, 11.	4.3	84
20	The Influence of Vegetation Characteristics on Individual Tree Segmentation Methods with Airborne LiDAR Data. Remote Sensing, 2019, 11, 2880.	4.0	35
21	Stem–Leaf Segmentation and Phenotypic Trait Extraction of Individual Maize Using Terrestrial LiDAR Data. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 1336-1346.	6.3	92
22	A global corrected SRTM DEM product for vegetated areas. Remote Sensing Letters, 2018, 9, 393-402.	1.4	36
23	The Transferability of Random Forest in Canopy Height Estimation from Multi-Source Remote Sensing Data. Remote Sensing, 2018, 10, 1183.	4.0	29
24	Deep Learning: Individual Maize Segmentation From Terrestrial Lidar Data Using Faster R-CNN and Regional Growth Algorithms. Frontiers in Plant Science, 2018, 9, 866.	3.6	104