Daniela Patinha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7731487/publications.pdf

Version: 2024-02-01

		1040056	1199594	
15	349	9	12	
papers	citations	h-index	g-index	
15	15	15	601	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	NADPH oxidase 1 is a novel pharmacological target for the development of an antiplatelet drug without bleeding side effects. FASEB Journal, 2020, 34, 13959-13977.	0.5	10
2	Adenosine A2A and A3 Receptors as Targets for the Treatment of Hypertensive-Diabetic Nephropathy. Biomedicines, 2020, 8, 529.	3.2	9
3	Determinants of renal oxygen metabolism during low Na + diet: effect of angiotensin II AT 1 and aldosterone receptor blockade. Journal of Physiology, 2020, 598, 5573-5587.	2.9	3
4	Diabetes downregulates renal adenosine A2A receptors in an experimental model of hypertension. PLoS ONE, 2019, 14, e0217552.	2.5	7
5	Angiotensin II-induced hypertension in rats is only transiently accompanied by lower renal oxygenation. Scientific Reports, 2018, 8, 16342.	3.3	9
6	Cooperative Oxygen Sensing by the Kidney and Carotid Body in Blood Pressure Control. Frontiers in Physiology, 2017, 8, 752.	2.8	14
7	Acute SGLT inhibition normalizes O ₂ tension in the renal cortex but causes hypoxia in the renal medulla in anaesthetized control and diabetic rats. American Journal of Physiology - Renal Physiology, 2015, 309, F227-F234.	2.7	180
8	Intrarenal Blockade of Angiotensin II AT 1 Receptor Abolishes Renal Cortical Hypoxia in Salt Restricted Animals. FASEB Journal, 2015, 29, 963.2.	0.5	0
9	Acute IP Furosemide Increases Medullary PO 2 in The Diabetic Rat Kidney. FASEB Journal, 2015, 29, 963.9.	0.5	0
10	Acute IP Phlorizin Normalizes Cortical PO 2 But Causes Medullary Hypoxia in The Diabetic Rat Kidney. FASEB Journal, 2015, 29, 959.2.	0.5	0
11	Activation of adenosine receptors improves renal antioxidant status in diabetic Wistar but not SHR rats. Upsala Journal of Medical Sciences, 2014, 119, 10-18.	0.9	16
12	Diabetes-induced increase of renal medullary hydrogen peroxide and urinary angiotensinogen is similar in normotensive and hypertensive rats. Life Sciences, 2014, 108, 71-79.	4.3	10
13	Angiotensin II contributes to glomerular hyperfiltration in diabetic rats independently of adenosine type I receptors. American Journal of Physiology - Renal Physiology, 2013, 304, F614-F622.	2.7	21
14	Role of H ₂ O ₂ in hypertension, reninâ€angiotensin system activation and renal medullary disfunction caused by angiotensin II. British Journal of Pharmacology, 2012, 166, 2386-2401.	5.4	37
15	Microinjection of angiotensin II in the caudal ventrolateral medulla induces hyperalgesia. Neuroscience, 2009, 158, 1301-1310.	2.3	33