
Nicholas J Mitchell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7731408/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analysis of migrating and non-migrating tides of the Extended Unified Model in the mesosphere and lower thermosphere. Annales Geophysicae, 2022, 40, 327-358.	1.6	3
2	Winds and tides of the Antarctic mesosphere and lower thermosphere: One year of meteor-radar observations over Rothera (68°S, 68°W) and comparisons with WACCM and eCMAM. Journal of Atmospheric and Solar-Terrestrial Physics, 2021, 212, 105510.	1.6	14
3	Determining Gravity Wave Sources and Propagation in the Southern Hemisphere by Rayâ€Tracing AIRS Measurements. Geophysical Research Letters, 2021, 48, e2020GL088621.	4.0	16
4	Stratospheric gravity waves over the mountainous island of South Georgia: testing a high-resolution dynamical model with 3-D satellite observations and radiosondes. Atmospheric Chemistry and Physics, 2021, 21, 7695-7722.	4.9	7
5	Wind Variations in the Mesosphere and Lower Thermosphere Near 60°S Latitude During the 2019 Antarctic Sudden Stratospheric Warming. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028909.	2.4	6
6	Activities of Smallâ€5cale Gravity Waves in the Upper Mesosphere Observed From Meteor Radar at King Sejong Station, Antarctica (62.22°S, 58.78°W) and Their Potential Sources. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034528.	3.3	11
7	Unusual Quasi 10â€Day Planetary Wave Activity and the Ionospheric Response During the 2019 Southern Hemisphere Sudden Stratospheric Warming. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029286.	2.4	22
8	Climatology of quasi-2-day wave structure and variability at middle latitudes in the northern and southern hemispheres. Journal of Atmospheric and Solar-Terrestrial Physics, 2021, 221, 105690.	1.6	4
9	Interhemispheric differences of mesosphere–lower thermosphere winds and tides investigated from three whole-atmosphere models and meteor radar observations. Atmospheric Chemistry and Physics, 2021, 21, 13855-13902.	4.9	24
10	Atmospheric tomography using the Nordic Meteor Radar Cluster and Chilean Observation Network De Meteor Radars: network details and 3D-Var retrieval. Atmospheric Measurement Techniques, 2021, 14, 6509-6532.	3.1	10
11	An 18‥ear Climatology of Directional Stratospheric Gravity Wave Momentum Flux From 3â€D Satellite Observations. Geophysical Research Letters, 2020, 47, e2020GL089557.	4.0	26
12	Radiosonde Observations of a Wintertime Meridional Convergence of Gravity Waves Around 60°S in the Lower Stratosphere. Geophysical Research Letters, 2020, 47, e2020GL089740.	4.0	2
13	Structure, Variability, and Meanâ€Flow Interactions of the January 2015 Quasiâ€2â€Đay Wave at Middle and High Southern Latitudes. Journal of Geophysical Research D: Atmospheres, 2019, 124, 5981-6008.	3.3	7
14	Gravity waves in the winter stratosphere over the Southern Ocean: high-resolution satellite observations and 3-D spectral analysis. Atmospheric Chemistry and Physics, 2019, 19, 15377-15414.	4.9	31
15	The South Georgia Wave Experiment: A Means for Improved Analysis of Gravity Waves and Low-Level Wind Impacts Generated from Mountainous Islands. Bulletin of the American Meteorological Society, 2018, 99, 1027-1040.	3.3	13
16	The Semiannual Oscillation of the Tropical Zonal Wind in the Middle Atmosphere Derived from Satellite Geopotential Height Retrievals. Journals of the Atmospheric Sciences, 2017, 74, 2413-2425.	1.7	40
17	Global observations of 2Âday wave coupling to the diurnal tide in a highâ€altitude forecastâ€assimilation system. Journal of Geophysical Research D: Atmospheres, 2017, 122, 4135-4149.	3.3	13
18	The South Georgia Wave Experiment (<scp>SGâ€WEX</scp>): radiosonde observations of gravity waves in the lower stratosphere. Part I: Energy density, momentum flux and wave propagation direction. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 3279-3290.	2.7	5

NICHOLAS J MITCHELL

#	Article	IF	CITATIONS
19	Exploring gravity wave characteristics in 3-D using a novel S-transform technique: AIRS/Aqua measurements over the Southern Andes and Drake Passage. Atmospheric Chemistry and Physics, 2017, 17, 8553-8575.	4.9	58
20	A two-dimensional Stockwell transform for gravity wave analysis of AIRS measurements. Atmospheric Measurement Techniques, 2016, 9, 2545-2565.	3.1	27
21	Multi-instrument gravity-wave measurements over Tierra del Fuego and the Drake Passage – Part 1: Potential energies and vertical wavelengths from AIRS, COSMIC, HIRDLS, MLS-Aura, SAAMER, SABER and radiosondes. Atmospheric Measurement Techniques, 2016, 9, 877-908.	3.1	28
22	Evidence of dispersion and refraction of a spectrally broad gravity wave packet in the mesopause region observed by the Na lidar and Mesospheric Temperature Mapper above Logan, Utah. Journal of Geophysical Research D: Atmospheres, 2016, 121, 579-594.	3.3	26
23	Seasonal evolution of the QBOâ€induced wave forcing and circulation anomalies in the northern winter stratosphere. Journal of Geophysical Research D: Atmospheres, 2016, 121, 10,411.	3.3	23
24	Combining AIRS and MLS observations for threeâ€dimensional gravity wave measurement. Geophysical Research Letters, 2016, 43, 884-893.	4.0	58
25	The southern stratospheric gravity wave hot spot: individual waves and their momentum fluxes measured by COSMIC GPS-RO. Atmospheric Chemistry and Physics, 2015, 15, 7797-7818.	4.9	82
26	A comprehensive survey of atmospheric quasi 3 day planetaryâ€scale waves and their impacts on the dayâ€toâ€day variations of the equatorial ionosphere. Journal of Geophysical Research: Space Physics, 2015, 120, 2979-2992.	2.4	21
27	Interhemispheric structure and variability of the 5-day planetary wave from meteor radar wind measurements. Annales Geophysicae, 2015, 33, 1349-1359.	1.6	11
28	Dynamical Response to the QBO in the Northern Winter Stratosphere: Signatures in Wave Forcing and Eddy Fluxes of Potential Vorticity. Journals of the Atmospheric Sciences, 2015, 72, 4487-4507.	1.7	47
29	Interannual variability of mesopause zonal winds over Ascension Island: Coupling to the stratospheric QBO. Journal of Geophysical Research D: Atmospheres, 2013, 118, 12,052.	3.3	23
30	The diurnal and semidiurnal tides over Ascension Island (° S, 14° W) and their interaction with the stratospheric quasi-biennial oscillation: studies with meteor radar, eCMAM and WACCM. Atmospheric Chemistry and Physics, 2013, 13, 9543-9564.	4.9	55
31	Coordinated investigation of summer time mid″atitude descending E layer (E _s) perturbations using Na lidar, ionosonde, and meteor wind radar observations over Logan, Utah (41.7°N, 111.8°W). Journal of Geophysical Research D: Atmospheres, 2013, 118, 1734-1746.	3.3	17
32	Mean winds, temperatures and the 16- and 5-day planetary waves in the mesosphere and lower thermosphere over Bear Lake Observatory (42° N, 111° W). Atmospheric Chemistry and Physics, 2012, 12, 1571-1585.	4.9	26
33	Assessment of gravity wave momentum flux measurement capabilities by meteor radars having different transmitter power and antenna configurations. Journal of Geophysical Research, 2012, 117, .	3.3	27
34	Zonal wave numbers of the summertime 2 day planetary wave observed in the mesosphere by EOS Aura Microwave Limb Sounder. Journal of Geophysical Research, 2011, 116, .	3.3	81
35	The 5â€day wave in the Arctic and Antarctic mesosphere and lower thermosphere. Journal of Geophysical Research, 2010, 115, .	3.3	35
36	Southern Argentina Agile Meteor Radar: System design and initial measurements of largeâ€scale winds and tides. Journal of Geophysical Research, 2010, 115, .	3.3	49

NICHOLAS J MITCHELL

#	Article	IF	CITATIONS
37	Gravity wave–tidal interactions in the mesosphere and lower thermosphere over Rothera, Antarctica (68°S, 68°W). Journal of Geophysical Research, 2010, 115, .	3.3	38
38	The sporadic radiant and distribution of meteors in the atmosphere as observed by VHF radar at Arctic, Antarctic and equatorial latitudes. Annales Geophysicae, 2009, 27, 2831-2841.	1.6	36
39	Longitudinal variability in intraseasonal oscillation in the tropical mesosphere and lower thermosphere region. Journal of Geophysical Research, 2009, 114, .	3.3	16
40	Planetary waves in coupling the stratosphere and mesosphere during the major stratospheric warming in 2003/2004. Journal of Geophysical Research, 2008, 113, .	3.3	109
41	A new height for the summer mesopause: Antarctica, December 2007. Geophysical Research Letters, 2008, 35, .	4.0	16
42	The wintertime two-day wave in the polar stratosphere, mesosphere and lower thermosphere. Atmospheric Chemistry and Physics, 2008, 8, 749-755.	4.9	35
43	A link between variability of the semidiurnal tide and planetary waves in the opposite hemisphere. Geophysical Research Letters, 2007, 34, .	4.0	35
44	Two-day wave coupling of the low-latitude atmosphere-ionosphere system. Journal of Geophysical Research, 2006, 111, .	3.3	84
45	A high-latitude 8-hour wave in the mesosphere and lower thermosphere. Journal of Geophysical Research, 2005, 110, .	3.3	9
46	A study of tidal and planetary wave periodicities present in midlatitude sporadicElayers. Journal of Geophysical Research, 2004, 109, .	3.3	101
47	Observations and modeling of the 6-hour tide in the upper mesosphere. Journal of Geophysical Research, 2004, 109, .	3.3	38
48	Planetary waves and variability of the semidiurnal tide in the mesosphere and lower thermosphere over Esrange (68ŰN, 21ŰE) during winter. Journal of Geophysical Research, 2004, 109, .	3.3	62
49	Mesopause dynamics from the scandinavian triangle of radars within the PSMOS-DATAR Project. Annales Geophysicae, 2004, 22, 367-386.	1.6	77
50	Longitude variability of the solar semidiurnal tide in the lower thermosphere through assimilation of ground- and space-based wind measurements. Journal of Geophysical Research, 2003, 108, .	3.3	18
51	Evidence of a role for modulated atmospheric tides in the dependence of sporadicElayers on planetary waves. Journal of Geophysical Research, 2003, 108, .	3.3	80
52	Intra-seasonal oscillations observed in the MLT region above UK (52°N, 2°W) and ESRANGE (68°N, 21°E). Geophysical Research Letters, 2003, 30, .	4.0	20
53	Mean winds and tides in the Arctic mesosphere and lower thermosphere. Journal of Geophysical Research, 2002, 107, SIA 2-1.	3.3	93
54	Global free oscillations of the atmosphere and secondary planetary waves in the mesosphere and lower thermosphere region during August/September time conditions. Journal of Geophysical Research, 2002, 107, ACL 24-1.	3.3	36

#	Article	IF	CITATIONS
55	The 8-hour tide in the Arctic mesosphere and lower thermosphere. Journal of Geophysical Research, 2002, 107, SIA 2-1-SIA 2-11.	3.3	49