
Duraisamy Kempuraj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7730926/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Autophagy in Extracellular Matrix and Wound Healing Modulation in the Cornea. Biomedicines, 2022, 10, 339.	1.4	15
2	Evaluation of CRISPR/Cas9 mediated TGIF gene editing to inhibit corneal fibrosis in vitro. Experimental Eye Research, 2022, 220, 109113.	1.2	4
3	Real-Time Noninvasive Bioluminescence, Ultrasound and Photoacoustic Imaging in NFκB-RE-Luc Transgenic Mice Reveal Clia Maturation Factor-Mediated Immediate and Sustained Spatio-Temporal Activation of NFκB Signaling Post-Traumatic Brain Injury in a Gender-Specific Manner. Cellular and Molecular Neurobiology. 2021, 41, 1687-1706.	1.7	10
4	Immune Suppression of Clia Maturation Factor Reverses Behavioral Impairment, Attenuates Amyloid Plaque Pathology and Neuroinflammation in an Alzheimer's Disease Mouse Model. Journal of NeuroImmune Pharmacology, 2021, 16, 363-375.	2.1	3
5	Neuroprotective effects of flavone luteolin in neuroinflammation and neurotrauma. BioFactors, 2021, 47, 190-197.	2.6	119
6	Acute Traumatic Brain Injury-Induced Neuroinflammatory Response and Neurovascular Disorders in the Brain. Neurotoxicity Research, 2021, 39, 359-368.	1.3	23
7	Cytokines, brain proteins, and growth factors in acute stroke patients: A pilot study. , 2021, 12, 366.		5
8	Brain Injury–Mediated Neuroinflammatory Response and Alzheimer's Disease. Neuroscientist, 2020, 26, 134-155.	2.6	47
9	COVID-19, Mast Cells, Cytokine Storm, Psychological Stress, and Neuroinflammation. Neuroscientist, 2020, 26, 402-414.	2.6	195
10	Mast Cell Activation, Neuroinflammation, and Tight Junction Protein Derangement in Acute Traumatic Brain Injury. Mediators of Inflammation, 2020, 2020, 1-12.	1.4	25
11	Glia Maturation Factor (GMF) Regulates Microglial Expression Phenotypes and the Associated Neurological Deficits in a Mouse Model of Traumatic Brain Injury. Molecular Neurobiology, 2020, 57, 4438-4450.	1.9	8
12	Psychological Stress–Induced Immune Response and Risk of Alzheimer's Disease in Veterans from Operation Enduring Freedom and Operation Iraqi Freedom. Clinical Therapeutics, 2020, 42, 974-982.	1.1	13
13	Neuroinflammation Mediated by Clia Maturation Factor Exacerbates Neuronal Injury in an <i>in vitro</i> Model of Traumatic Brain Injury. Journal of Neurotrauma, 2020, 37, 1645-1655.	1.7	9
14	A role for glia maturation factor dependent activation of mast cells and microglia in MPTP induced dopamine loss and behavioural deficits in mice. Brain, Behavior, and Immunity, 2020, 87, 429-443.	2.0	20
15	NLRP3 inflammasome and glia maturation factor coordinately regulate neuroinflammation and neuronal loss in MPTP mouse model of Parkinson's disease. International Immunopharmacology, 2020, 83, 106441.	1.7	36
16	Absence of Glia Maturation Factor Protects from Axonal Injury and Motor Behavioral Impairments after Traumatic Brain Injury. Experimental Neurobiology, 2020, 29, 230-248.	0.7	9
17	Current Trends in Biomarkers for Traumatic Brain Injury. Open Access Journal of Neurology & Neurosurgery, 2020, 12, 86-94.	0.1	9
18	Mast Cell Proteases Activate Astrocytes and Glia-Neurons and Release Interleukin-33 by Activating p38 and ERK1/2 MAPKs and NF-I®B. Molecular Neurobiology, 2019, 56, 1681-1693.	1.9	50

#	Article	IF	CITATIONS
19	Are Tanycytes the Missing Link Between Type 2 Diabetes and Alzheimer's Disease?. Molecular Neurobiology, 2019, 56, 833-843.	1.9	12
20	Next Generation Precision Medicine: CRISPR-mediated Genome Editing for the Treatment of Neurodegenerative Disorders. Journal of NeuroImmune Pharmacology, 2019, 14, 608-641.	2.1	22
21	Synergy in Disruption of Mitochondrial Dynamics by Aβ (1-42) and Glia Maturation Factor (GMF) in SH-SY5Y Cells Is Mediated Through Alterations in Fission and Fusion Proteins. Molecular Neurobiology, 2019, 56, 6964-6975.	1.9	17
22	CRISPR/Cas9 Editing of Glia Maturation Factor Regulates Mitochondrial Dynamics by Attenuation of the NRF2/HO-1 Dependent Ferritin Activation in Glial Cells. Journal of NeuroImmune Pharmacology, 2019, 14, 537-550.	2.1	22
23	Mast Cells in Stress, Pain, Blood-Brain Barrier, Neuroinflammation and Alzheimer's Disease. Frontiers in Cellular Neuroscience, 2019, 13, 54.	1.8	85
24	Molecular Association of Glia Maturation Factor with the Autophagic Machinery in Rat Dopaminergic Neurons: a Role for Endoplasmic Reticulum Stress and MAPK Activation. Molecular Neurobiology, 2019, 56, 3865-3881.	1.9	11
25	Targeted Gene Editing of Glia Maturation Factor in Microglia: a Novel Alzheimer's Disease Therapeutic Target. Molecular Neurobiology, 2019, 56, 378-393.	1.9	43
26	Mast Cells Augment Neuroinflammation and Neurodegeneration. FASEB Journal, 2019, 33, 791.5.	0.2	1
27	Glia Maturation Factor Dependent Mast Cell Activation and Calpain 1 Synergize Dopaminergic Neuronal Loss and Behavioral Deficits in an MPTP Mouse Model of Parkinson's Disease. FASEB Journal, 2019, 33, 791.7.	0.2	0
28	Glia Maturation Factorâ€Antibody Injection Reduces Behavioral Impairment, Neuro Inflammation and Amyloid Pathology in 5XFAD Mice Brains. FASEB Journal, 2019, 33, 791.1.	0.2	0
29	Coâ€localization of Glia Maturation Factor and Progranulin in the Human Alzheimer's Disease Brains. FASEB Journal, 2019, 33, 791.19.	0.2	0
30	Glia Maturation Factor Gene Editing Improves Neurocognitive Function in an Alzheimer's Disease Mouse Model. FASEB Journal, 2019, 33, 620.10.	0.2	0
31	Glia Maturation Factor in the Pathogenesis of Alzheimer's disease. Open Access Journal of Neurology & Neurosurgery, 2019, 12, 79-82.	0.1	1
32	Glia Maturation Factor Dependent Inhibition of Mitochondrial PGC-1α Triggers Oxidative Stress-Mediated Apoptosis in N27 Rat Dopaminergic Neuronal Cells. Molecular Neurobiology, 2018, 55, 7132-7152.	1.9	30
33	Cross-Talk between Glia, Neurons and Mast Cells in Neuroinflammation Associated with Parkinson's Disease. Journal of NeuroImmune Pharmacology, 2018, 13, 100-112.	2.1	58
34	Glia Maturation Factor and Mast Cell-Dependent Expression of Inflammatory Mediators and Proteinase Activated Receptor-2 in Neuroinflammation. Journal of Alzheimer's Disease, 2018, 66, 1117-1129.	1.2	22
35	Neuro-Immuno-Gene- and Genome-Editing-Therapy for Alzheimer's Disease: Are We There Yet?. Journal of Alzheimer's Disease, 2018, 65, 321-344.	1.2	17
36	Mast Cell Proteases Activate Gliaâ€Neurons and Release Interleukinâ€33 by Activating MAPKs. FASEB Journal, 2018, 32, 805.22.	0.2	0

#	Article	IF	CITATIONS
37	IL-37 a New IL-1 Family Member Emerges as a Key Suppressor of Asthma Mediated by Mast Cells. Immunological Investigations, 2017, 46, 239-250.	1.0	14
38	Co-Localization of Clia Maturation Factor with NLRP3 Inflammasome and Autophagosome Markers in Human Alzheimer's Disease Brain. Journal of Alzheimer's Disease, 2017, 60, 1143-1160.	1.2	79
39	Co-Expression of Clia Maturation Factor and Apolipoprotein E4 in Alzheimer's Disease Brain. Journal of Alzheimer's Disease, 2017, 61, 553-560.	1.2	22
40	Glia Maturation Factor and Mitochondrial Uncoupling Proteins 2 and 4 Expression in the Temporal Cortex of Alzheimer's Disease Brain. Frontiers in Aging Neuroscience, 2017, 9, 150.	1.7	31
41	Brain and Peripheral Atypical Inflammatory Mediators Potentiate Neuroinflammation and Neurodegeneration. Frontiers in Cellular Neuroscience, 2017, 11, 216.	1.8	261
42	Mast Cell Activation in Brain Injury, Stress, and Post-traumatic Stress Disorder and Alzheimer's Disease Pathogenesis. Frontiers in Neuroscience, 2017, 11, 703.	1.4	79
43	Measurement of Elevated IL-37 Levels in Acute Ischemic Brain Injury: A Cross-sectional Pilot Study. Cureus, 2017, 9, e1767.	0.2	7
44	Abstract TP224: Interleukin-37 Level is Elevated in Acute Ischemic Stroke. Stroke, 2017, 48, .	1.0	0
45	Are mast cells important in diabetes?. Polish Journal of Pathology, 2016, 3, 199-206.	0.1	10
46	Mast Cells Release Chemokine CCL2 in Response to Parkinsonian Toxin 1-Methyl-4-Phenyl-Pyridinium (MPP+). Neurochemical Research, 2016, 41, 1042-1049.	1.6	25
47	Absence of Glia Maturation Factor Protects Dopaminergic Neurons and Improves Motor Behavior in Mouse Model of Parkinsonism. Neurochemical Research, 2015, 40, 980-990.	1.6	17
48	Dopaminergic Toxin 1-Methyl-4-Phenylpyridinium, Proteins α-Synuclein and Glia Maturation Factor Activate Mast Cells and Release Inflammatory Mediators. PLoS ONE, 2015, 10, e0135776.	1.1	33
49	Glia Maturation Factor Stimulates Release of Proinflammatory Mediators from Mast Cells. FASEB Journal, 2015, 29, LB82.	0.2	0
50	Glia Maturation Factor Deficiency Suppresses 1-Methyl-4-Phenylpyridinium-Induced Oxidative Stress in Astrocytes. Journal of Molecular Neuroscience, 2014, 53, 590-599.	1.1	21
51	Alzheimer's Disease: Evidence for the Expression of Interleukin-33 and Its Receptor ST2 in the Brain. Journal of Alzheimer's Disease, 2014, 40, 297-308.	1.2	61
52	Mast cell activation by glia maturation factor, 1â€methylâ€4â€phenylpyridinium and αâ€synuclein: implications for Parkinson's disease (596.5). FASEB Journal, 2014, 28, 596.5.	0.2	1
53	Glia Maturation Factor Expression in Entorhinal Cortex of Alzheimer's Disease Brain. Neurochemical Research, 2013, 38, 1777-1784.	1.6	27
54	Glia Maturation Factor Expression in Hippocampus of Human Alzheimer's Disease. Neurochemical Research, 2013, 38, 1580-1589.	1.6	23

#	Article	IF	CITATIONS
55	Enhanced Expression of Glia Maturation Factor Correlates with Glial Activation in the Brain of Triple Transgenic Alzheimer's Disease Mice. Neurochemical Research, 2013, 38, 218-225.	1.6	45
56	Clia Maturation Factor Induces Interleukin-33 Release from Astrocytes: Implications for Neurodegenerative Diseases. Journal of NeuroImmune Pharmacology, 2013, 8, 643-650.	2.1	62
57	Protection of MPTP-induced neuroinflammation and neurodegeneration by Pycnogenol. Neurochemistry International, 2013, 62, 379-388.	1.9	76
58	The Novel Cytokine Interleukin-33 Activates Acinar Cell Proinflammatory Pathways and Induces Acute Pancreatic Inflammation in Mice. PLoS ONE, 2013, 8, e56866.	1.1	58
59	Glia maturation factor activate mast cells and induce chemokine CCL2 release: Implication for neurodegenerative diseases. FASEB Journal, 2013, 27, 795.2.	0.2	0
60	Mast Cell Activation and Interleukin-33 Upregulation in Pancreas and Lung of Pancreatic Duct Ligation-Induced Acute Pancreatitis in Rodents. Gastroenterology, 2011, 140, S-551.	0.6	0
61	Systemic Inflammation With Multiorgan Dysfunction is the Cause of Death in Murine Pancreatic Duct Ligation-Induced Acute Pancreatitis. Gastroenterology, 2011, 140, S-1026.	0.6	0
62	Amitriptyline and Prochlorperazine Inhibit Proinflammatory Mediator Release From Human Mast Cells. Journal of Clinical Psychopharmacology, 2011, 31, 385-387.	0.7	20
63	Systemic Inflammation with Multiorgan Dysfunction Is the Cause of Death in Murine Ligation-Induced Acute Pancreatitis. Journal of Gastrointestinal Surgery, 2011, 15, 1670-1678.	0.9	16
64	IL-33 augments substance P–induced VEGF secretion from human mast cells and is increased in psoriatic skin. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4448-4453.	3.3	282
65	Brain metastases of mouse mammary adenocarcinoma is increased by acute stress. Brain Research, 2010, 1366, 204-210.	1.1	19
66	Corticotropinâ€releasing hormoneâ€receptor 2 is required for acute stressâ€induced bladder vascular permeability and release of vascular endothelial growth factor. BJU International, 2010, 106, 1394-1399.	1.3	32
67	Rupatadine Inhibits Proinflammatory Mediator Secretion from Human Mast Cells Triggered by Different Stimuli. International Archives of Allergy and Immunology, 2010, 151, 38-45.	0.9	40
68	Mercury induces inflammatory mediator release from human mast cells. Journal of Neuroinflammation, 2010, 7, 20.	3.1	73
69	A Novel Model of Severe Gallstone Pancreatitis: Murine Pancreatic Duct Ligation Results in Systemic Inflammation and Substantial Mortality. Pancreatology, 2010, 10, 536-544.	0.5	16
70	Human mast cell degranulation is distinguished from selective secretion of TNF through intracellular calcium, energy and mitochondrial morphology dynamics. FASEB Journal, 2010, 24, 966.3.	0.2	0
71	Autism: an emerging â€~neuroimmune disorder' in search of therapy. Expert Opinion on Pharmacotherapy, 2009, 10, 2127-2143.	0.9	69
72	Mitochondrial Uncoupling Protein 2 Inhibits Mast Cell Activation and Reduces Histamine Content. Journal of Immunology, 2009, 183, 6313-6319.	0.4	50

DURAISAMY KEMPURAJ

#	Article	IF	CITATIONS
73	Urocortin induces interleukin-6 release from rat cardiomyocytes through p38 MAP kinase, ERK and NF-κB activation. Journal of Molecular Endocrinology, 2009, 42, 397-405.	1.1	32
74	Human Mast Cells Stimulate Activated T Cells. Annals of the New York Academy of Sciences, 2008, 1144, 74-82.	1.8	42
75	Impact of stress and mast cells on brain metastases. Journal of Neuroimmunology, 2008, 205, 1-7.	1.1	54
76	Niacin-induced "Flush―Involves Release of Prostaglandin D ₂ from Mast Cells and Serotonin from Platelets: Evidence from Human Cells in Vitro and an Animal Model. Journal of Pharmacology and Experimental Therapeutics, 2008, 327, 665-672.	1.3	38
77	Mast Cells, T Cells, and Inhibition by Luteolin: Implications for the Pathogenesis and Treatment of Multiple Sclerosis. Advances in Experimental Medicine and Biology, 2007, 601, 423-430.	0.8	43
78	IL-1 Induces Vesicular Secretion of IL-6 without Degranulation from Human Mast Cells. Journal of Immunology, 2003, 171, 4830-4836.	0.4	202
79	Characterization of Mast Cell-Committed Progenitors Present in Human Umbilical Cord Blood. Blood, 1999, 93, 3338-3346.	0.6	112