
Tore-Geir Iversen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7730796/publications.pdf Version: 2024-02-01

TODE-CEID WEDSEN

#	Article	IF	CITATIONS
1	Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. Nano Today, 2011, 6, 176-185.	11.9	1,063
2	Pathways followed by ricin and Shiga toxin into cells. Histochemistry and Cell Biology, 2002, 117, 131-141.	1.7	150
3	Cellular Trafficking of Quantum Dot-Ligand Bioconjugates and Their Induction of Changes in Normal Routing of Unconjugated Ligands. Nano Letters, 2008, 8, 1858-1865.	9.1	136
4	Pathways followed by protein toxins into cells. International Journal of Medical Microbiology, 2004, 293, 483-490.	3.6	134
5	Protein toxins from plants and bacteria: Probes for intracellular transport and tools in medicine. FEBS Letters, 2010, 584, 2626-2634.	2.8	108
6	Endosome to Golgi Transport of Ricin Is Regulated by Cholesterol. Molecular Biology of the Cell, 2000, 11, 4205-4216.	2.1	89
7	Endosome to Golgi Transport of Ricin Is Independent of Clathrin and of the Rab9- and Rab11-GTPases. Molecular Biology of the Cell, 2001, 12, 2099-2107.	2.1	81
8	Shiga Toxin Regulates Its Entry in a Syk-dependent Manner. Molecular Biology of the Cell, 2006, 17, 1096-1109.	2.1	77
9	Transport of Ricin from Endosomes to the Golgi Apparatus is Regulated by Rab6A and Rab6A′. Traffic, 2006, 7, 663-672.	2.7	72
10	New metal-based nanoparticles for intravenous use: requirements for clinical success with focus on medical imaging. Nanomedicine: Nanotechnology, Biology, and Medicine, 2010, 6, 730-737.	3.3	60
11	Cell-Penetrating Peptides: Possibilities and Challenges for Drug Delivery in Vitro and in Vivo. Molecules, 2015, 20, 13313-13323.	3.8	51
12	Uptake of ricinB-quantum dot nanoparticles by a macropinocytosis-like mechanism. Journal of Nanobiotechnology, 2012, 10, 33.	9.1	50
13	Drug-Loaded Photosensitizer-Chitosan Nanoparticles for Combinatorial Chemo- and Photodynamic-Therapy of Cancer. Biomacromolecules, 2020, 21, 1489-1498.	5.4	45
14	Cholesterol Loading Induces a Block in the Exit of VSVG from the TGN. Traffic, 2003, 4, 772-784.	2.7	38
15	Cytotoxicity of Poly(Alkyl Cyanoacrylate) Nanoparticles. International Journal of Molecular Sciences, 2017, 18, 2454.	4.1	38
16	Cabazitaxel-loaded Poly(2-ethylbutyl cyanoacrylate) nanoparticles improve treatment efficacy in a patient derived breast cancer xenograft. Journal of Controlled Release, 2019, 293, 183-192.	9.9	38
17	Importance of agglomeration state and exposure conditions for uptake and pro-inflammatory responses to amorphous silica nanoparticles in bronchial epithelial cells. Nanotoxicology, 2012, 6, 700-712.	3.0	35
18	Fate and effects of silver nanoparticles on early life-stage development of zebrafish (Danio rerio) in comparison to silver nitrate. Science of the Total Environment, 2018, 610-611, 972-982.	8.0	35

TORE-GEIR IVERSEN

#	Article	IF	CITATIONS
19	Biodistribution, pharmacokinetics and excretion studies of intravenously injected nanoparticles and extracellular vesicles: Possibilities and challenges. Advanced Drug Delivery Reviews, 2022, 186, 114326.	13.7	33
20	Development of nanoparticles for clinical use. Nanomedicine, 2014, 9, 1295-1299.	3.3	30
21	Selective regulation of the Rab9-independent transport of ricin to the Golgi apparatus by calcium. Journal of Cell Science, 2002, 115, 3449-3456.	2.0	28
22	Biological response and cytotoxicity induced by lipid nanocapsules. Journal of Nanobiotechnology, 2020, 18, 5.	9.1	26
23	Small variations in nanoparticle structure dictate differential cellular stress responses and mode of cell death. Nanotoxicology, 2019, 13, 761-782.	3.0	23
24	Mechanism of cellular uptake and cytotoxicity of paclitaxel loaded lipid nanocapsules in breast cancer cells. International Journal of Pharmaceutics, 2021, 597, 120217.	5.2	23
25	Selective regulation of the Rab9-independent transport of ricin to the Golgi apparatus by calcium. Journal of Cell Science, 2002, 115, 3449-56.	2.0	23
26	Ceramide-containing liposomes with doxorubicin: time and cell-dependent effect of C6 and C12 ceramide. Oncotarget, 2017, 8, 76921-76934.	1.8	15
27	Biodistribution of Poly(alkyl cyanoacrylate) Nanoparticles in Mice and Effect on Tumor Infiltration of Macrophages into a Patient-Derived Breast Cancer Xenograft. Nanomaterials, 2021, 11, 1140.	4.1	7
28	Cabazitaxel-loaded poly(alkyl cyanoacrylate) nanoparticles: Toxicity and changes in the proteome of breast, colon and prostate cancer cells. Nanotoxicology, 2021, 15, 1-20.	3.0	5
29	Structural Variants of poly(alkylcyanoacrylate) Nanoparticles Differentially Affect LC3 and Autophagic Cargo Degradation. Journal of Biomedical Nanotechnology, 2020, 16, 432-445.	1.1	5
30	Comment on "Short Ligands Affect Modes of QD Uptake and Elimination in Human Cells― ACS Nano, 2011, 5, 7690-7690.	14.6	3
31	Quantum dot bioconjugates: uptake into cells and induction of changes in normal cellular transport. , 2009, , .		2
32	Cellular uptake of nanoparticles: Involvement of caveolae?. Precision Nanomedicine, 2021, 4, .	0.8	1