Tien Quang Nguyen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7730630/publications.pdf Version: 2024-02-01

. –

#	ARTICLE	IF	CITATIONS
1	Giant Enhancement of Seebeck Coefficient by Deformation of Silicene Buckled Structure in Calciumâ€Intercalated Layered Silicene Film. Advanced Materials Interfaces, 2022, 9, 2101752.	3.7	26
2	Giant Enhancement of Seebeck Coefficient by Deformation of Silicene Buckled Structure in Calciumâ€Intercalated Layered Silicene Film (Adv. Mater. Interfaces 1/2022). Advanced Materials Interfaces, 2022, 9, .	3.7	0
3	Low-temperature acanthite-like phase of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Cu</mml:mi><mml:m mathvariant="normal">S</mml:m </mml:msub></mml:mrow> : Electronic and transport properties. Physical Review B. 2022. 105.</mml:math 	າກ _{ູ2} 23.2	ו:mn>8
4	A first-principles study on the electrical conductivity of Ag2S1â^' <i>x</i> Se <i>x</i> (<i>x</i> = 0, 0.25,)	Tj ETQq0	0 0 rgBT /Ov 11
5	Interaction of Carbon and Extended Defects in $\hat{I}\pm$ -Fe Studied by First-Principles Based Interatomic Potential. Materials Transactions, 2022, 63, 475-483.	1.2	1
6	First-principles calculation of electronic density of states and Seebeck coefficient in transition-metal-doped Si–Ge alloys. Solid State Communications, 2021, 323, 114115.	1.9	6
7	Intrinsic defect formation and the effect of transition metal doping on transport properties in a ductile thermoelectric material α-Ag ₂ S: a first-principles study. Physical Chemistry Chemical Physics, 2021, 23, 9773-9784.	2.8	13
8	Correction: Intrinsic defect formation and the effect of transition metal doping on transport properties in a ductile thermoelectric material α-Ag ₂ S: a first-principles study. Physical Chemistry Chemical Physics, 2021, 23, 8938-8938.	2.8	6
9	Segregation of Carbon in α-Fe Symmetrical Tilt Grain Boundaries Studied by First-Principles Based Interatomic Potential. Materials Transactions, 2021, 62, 1057-1063.	1.2	4
10	Thermoelectric power factor enhancement of calcium-intercalated layered silicene by introducing metastable phase. Applied Physics Express, 2021, 14, 115505.	2.4	9
11	Does GaAs bulk lattice really expand due to defects in the low concentration regime?. Solid State Communications, 2020, 316-317, 113918.	1.9	1
12	True bulk As-antisite defect in GaAs(1Â1Â0) identified by DFT calculations and probed by STM/STS measurements. Applied Surface Science, 2020, 511, 145590.	6.1	8
13	Atomic and Effective Pair Interactions in FeC Alloy with Point Defects: A Cluster Expansion Study. ISIJ International, 2019, 59, 2343-2351.	1.4	0
14	Large-scale spin-polarized DFT calculation of electronic properties of GaAs with defects. Materials Research Express, 2019, 6, 055914.	1.6	7
15	Atomistically Kinetic Simulations of Carbon Diffusion in <i>α</i> -Fe with Point Defect. The Proceedings of the Computational Mechanics Conference, 2019, 2019.32, 250.	0.0	0
16	Development of Fe-C interatomic potential for carbon impurities in α-iron. Computational Materials Science, 2018, 150, 510-516.	3.0	13
17		6.1	1
18	First-Principles Study of BCC/FCC Phase Transition Promoted by Interstitial Carbon in Iron. Materials	1.2	16

TIEN QUANG NGUYEN

#	Article	IF	CITATIONS
19	Diffusion Properties of Carbon in Fe-C Alloy using New Tersoff Potential. The Proceedings of the Computational Mechanics Conference, 2018, 2018.31, 237.	0.0	О
20	Another Way of Looking at Reactivity Enhancement in Large-Area Graphene: The Role of Exchange Splitting from First-Principles Methods. Journal of Physical Chemistry C, 2015, 119, 26636-26642.	3.1	1
21	Effect of oxygen vacancy on the adsorption of O2 on anatase TiO2(001): A DFT-based study. Surface Science, 2015, 633, 38-45.	1.9	52
22	DFT+U study on the oxygen adsorption and dissociation on CeO2-supported platinum cluster. Applied Surface Science, 2014, 288, 244-250.	6.1	26
23	Molecular oxygen adsorption on ferromagnetic platinum. Chemical Physics Letters, 2013, 555, 125-130.	2.6	9
24	Study of NO oxidation reaction over the Pt cluster supported on Î ³ -Al2O3(111) surface. Current Applied Physics, 2012, 12, S110-S114.	2.4	4
25	Analysis of band gap formation in graphene by Si impurities: Local bonding interaction rules. Chemical Physics Letters, 2011, 515, 85-90.	2.6	13
26	Molecular and Electronic Tuning of Si/Carbon Nanotube Hybrid System. Japanese Journal of Applied Physics, 2011, 50, 045101.	1.5	1
27	Nitric Oxide Adsorption Effects on Metal Phthalocyanines. Journal of Physical Chemistry B, 2010, 114, 10017-10021.	2.6	52
28	The Adsorption of NO on Various Metal Tape-Porphyrins: A First-Principles Study. Journal of the Physical Society of Japan, 2009, 78, 014706.	1.6	10
29	NO adsorption effects on various functional molecular nanowires. Computational Materials Science, 2009, 47, 111-120.	3.0	8
30	DFT study on the adsorption of NO on iron tapeâ€porphyrin. Surface and Interface Analysis, 2008, 40, 1082-1084.	1.8	9
31	Bonding of Pt/Fe overlayer and its effects on atomic oxygen chemisorption from density functional theory study. Surface Science, 2008, 602, 3415-3423.	1.9	15
32	Adsorption of diatomic molecules on iron tape-porphyrin: A comparative study. Physical Review B, 2008, 77, .	3.2	26
33	Atomically Precise Delineation of As Antisite Defect States from Undoped Gallium Arsenide Host Lattice by Scanning Tunneling Microscopy and Spectroscopy Measurements and Density Functional Theory Calculations, Physica Status Solidi (B): Basic Research, 0 _ 2100652	1.5	1