Hideaki Maeda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7730117/publications.pdf

Version: 2024-02-01

759233 839539 19 624 12 18 h-index citations g-index papers 20 20 20 475 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Achievement of 1020 MHz NMR. Journal of Magnetic Resonance, 2015, 256, 30-33.	2.1	127
2	Effect of YBCO-Coil Shape on the Screening Current-Induced Magnetic Field Intensity. IEEE Transactions on Applied Superconductivity, 2010, 20, 744-747.	1.7	94
3	Hoop Stress Modification, Stress Hysteresis and Degradation of a REBCO Coil Due to the Screening Current Under External Magnetic Field Cycling. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-7.	1.7	54
4	Measurement and Simulation of Magnetic Field Generated by Screening Currents in HTS Coil. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-5.	1.7	48
5	Development of a superconducting joint between a GdBa ₂ Cu ₃ O _{7-<i>i)î</i>} -coated conductor and YBa ₂ Cu ₃ O _{7â°'<ii>î'</ii>} bulk: towards a superconducting joint between RE (Rare Earth) Ba ₂ Cu ₃ O _{7â°'<iiî'< ii=""></iiî'<>} -coated conductors. Superconductor Science and Technology, 2015, 28, 075010.	3.5	47
6	The MIRAI Program and the New Super-High Field NMR Initiative and Its Relevance to the Development of Superconducting Joints in Japan. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-9.	1.7	41
7	Effect of coil current sweep cycle and temperature change cycle on the screening current-induced magnetic field for Ybco-coated conductor coils. AIP Conference Proceedings, 2012, , .	0.4	35
8	HTS-NMR: Present Status and Future Plan. IEEE Transactions on Applied Superconductivity, 2010, 20, 714-717.	1.7	33
9	Bi-2223 Innermost Coil for 1.03 GHz NMR Magnet. IEEE Transactions on Applied Superconductivity, 2011, 21, 2110-2113.	1.7	32
10	Future prospects for NMR magnets: A perspective. Journal of Magnetic Resonance, 2019, 306, 80-85.	2.1	29
11	REBCO Layer-Wound Coil Tests Under Electromagnetic Forces in an External Magnetic Field of up to 17.2 T. IEEE Transactions on Applied Superconductivity, 2012, 22, 9501604-9501604.	1.7	25
12	Experiment and numerical simulation of the combined effect of winding, cool-down, and screening current induced stresses in REBCO coils. Superconductor Science and Technology, 2022, 35, 054001.	3.5	19
13	Design and Development of a Compact 1 GHz (23.5 T)-Class NMR Magnet With Bi-2223 Inner Coils. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-7.	1.7	10
14	Continuous Heating Criteria to Avoid Thermal Runaway of Insulated HTS Coils in High Fields. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-6.	1.7	5
15	Performance of Epoxy-Impregnated Intra-Layer No-Insulation (LNI) REBCO Coils at 77 K. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-6.	1.7	4
16	Use of a Thermal Grid to Increase Thermal Runaway Current for REBCO Pancake Coils Operated at 77 K. IEEE Transactions on Applied Superconductivity, 2013, 23, 4603505-4603505.	1.7	4
17	Basic Behavior of the Contact Resistivity of an Intra-Layer No-Insulation (LNI) REBCO Coil. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-7.	1.7	4
18	A new concept for developing a compact joint structure for reducing joint resistance between high-temperature superconductors (HTS) and low-temperature superconductors (LTS). Superconductor Science and Technology, 2020, 33, 115015.	3.5	1

#	Article	IF	CITATIONS
19	Nanostructures of REBa ₂ Cu ₃ O _{7ï½<i>x</i>} High Temperature Super Conductor Joint. Materia Japan, 2021, 60, 212-217.	0.1	O