

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7729745/publications.pdf Version: 2024-02-01

LUN WEN

#	Article	IF	CITATIONS
1	Active and Passive Microwave Signatures of Diurnal Soil Freeze-Thaw Transitions on the Tibetan Plateau. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-14.	2.7	5
2	Characteristic analysis of the spatio-temporal distribution of key variables of the soil freeze-thaw processes over the Qinghai-Tibetan Plateau. Cold Regions Science and Technology, 2022, 197, 103526.	1.6	6
3	Diurnal Variation in Cloud and Precipitation Characteristics in Summer over the Tibetan Plateau and Sichuan Basin. Remote Sensing, 2022, 14, 2711.	1.8	4
4	Variations in the top-layer soil freezing/thawing process from 2009 to 2018 in the Maqu area of the Tibetan Plateau. Theoretical and Applied Climatology, 2021, 143, 21-32.	1.3	12
5	Using a Discrete Scattering Model to Constrain Water Cloud Model for Simulating Ground-Based Scatterometer Measurements and Retrieving Soil Moisture. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, , 1-1.	2.3	1
6	An Air-to-Soil Transition Model for Discrete Scattering-Emission Modelling at L-Band. Journal of Remote Sensing, 2021, 2021, .	3.2	7
7	Impact of Soil Permittivity and Temperature Profile on L-Band Microwave Emission of Frozen Soil. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 4080-4093.	2.7	15
8	Year-long, broad-band, microwave backscatter observations of an alpine meadow over the Tibetan Plateau with a ground-based scatterometer. Earth System Science Data, 2021, 13, 2819-2856.	3.7	5
9	Monitoring Water and Energy Cycles at Climate Scale in the Third Pole Environment (CLIMATE-TPE). Remote Sensing, 2021, 13, 3661.	1.8	7
10	Estimates of Daily Evapotranspiration in the Source Region of the Yellow River Combining Visible/Near-Infrared and Microwave Remote Sensing. Remote Sensing, 2021, 13, 53.	1.8	2
11	Parameter Sensitivities of the Community Land Model at Two Alpine Sites in the Three-River Source Region. Journal of Meteorological Research, 2020, 34, 851-864.	0.9	7
12	Assessments of the factors controlling latent heat flux and the coupling degree between an alpine wetland and the atmosphere on the Qinghai-Tibetan Plateau in summer. Atmospheric Research, 2020, 240, 104937.	1.8	7
13	Role of May surface temperature over eastern China in East Asian summer monsoon circulation and precipitation. International Journal of Climatology, 2020, 40, 6396-6409.	1.5	7
14	A study of the characteristics of energy flux and its relationship with the summer monsoon over alpine wetlands in the source region of the Yellow River. Meteorology and Atmospheric Physics, 2019, 131, 195-210.	0.9	0
15	Derivation of Vegetation Optical Depth and Water Content in the Source Region of the Yellow River using the FY-3B Microwave Data. Remote Sensing, 2019, 11, 1536.	1.8	8
16	Hydro-meteorological influences on the growing season CO2 exchange of an alpine meadow in the northeastern Tibetan Plateau permafrost region: observations using eddy covariance method. Theoretical and Applied Climatology, 2019, 138, 1063-1073.	1.3	5
17	A Closed-Form Expression of Soil Temperature Sensing Depth at L-Band. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 4889-4897.	2.7	13
18	Assessment of Soil Moisture SMAP Retrievals and ELBARA-III Measurements in a Tibetan Meadow Ecosystem. IEEE Geoscience and Remote Sensing Letters, 2019, 16, 1407-1411.	1.4	13

#	Article	IF	CITATIONS
19	Sampling depth of L-band radiometer measurements of soil moisture and freeze-thaw dynamics on the Tibetan Plateau. Remote Sensing of Environment, 2019, 226, 16-25.	4.6	54
20	Parameter Optimization of a Discrete Scattering Model by Integration of Global Sensitivity Analysis Using SMAP Active and Passive Observations. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 1084-1099.	2.7	22
21	Variations of precipitation characteristics during the period 1960–2014 in the Source Region of the Yellow River, China. Journal of Arid Land, 2018, 10, 388-401.	0.9	14
22	Assessment of Air Temperature Trends in the Source Region of Yellow River and Its Sub-Basins, China. Asia-Pacific Journal of Atmospheric Sciences, 2018, 54, 111-123.	1.3	16
23	Assessment of the SMAP Soil Emission Model and Soil Moisture Retrieval Algorithms for a Tibetan Desert Ecosystem. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 3786-3799.	2.7	27
24	Impact of surface roughness, vegetation opacity and soil permittivity on L-band microwave emission and soil moisture retrieval in the third pole environment. Remote Sensing of Environment, 2018, 209, 633-647.	4.6	40
25	Climateâ€related trends of actual evapotranspiration over the Tibetan Plateau (1961–2010). International Journal of Climatology, 2018, 38, e48.	1.5	27
26	The warm season characteristics of the turbulence structure and transfer of turbulent kinetic energy over alpine wetlands at the source of the Yellow River. Meteorology and Atmospheric Physics, 2018, 130, 529-542.	0.9	6
27	Late spring soil moisture variation over the Tibetan Plateau and its influences on the plateau summer monsoon. International Journal of Climatology, 2018, 38, 4597-4609.	1.5	10
28	Broadband Full Polarimetric Scatterometry for Monitoring Soil Moisture and Vegetation Properties Over a Tibetan Meadow. , 2018, , .		1
29	Highâ€Resolution Land Surface Modeling of Hydrological Changes Over the Sanjiangyuan Region in the Eastern Tibetan Plateau: 1. Model Development and Evaluation. Journal of Advances in Modeling Earth Systems, 2018, 10, 2806-2828.	1.3	43
30	A Study of Soil Thermal and Hydraulic Properties and Parameterizations for CLM in the SRYR. Journal of Geophysical Research D: Atmospheres, 2018, 123, 8487-8499.	1.2	18
31	Estimation of Penetration Depth from Soil Effective Temperature in Microwave Radiometry. Remote Sensing, 2018, 10, 519.	1.8	38
32	Liquidâ€Vaporâ€Air Flow in the Frozen Soil. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7393-7415.	1.2	57
33	Impact of soil freeze-thaw mechanism on the runoff dynamics of two Tibetan rivers. Journal of Hydrology, 2018, 563, 382-394.	2.3	44
34	Energy balance in the semiarid area of the Loess Plateau, China. Journal of Geophysical Research D: Atmospheres, 2017, 122, 2155-2168.	1.2	13
35	Assessment of Noah land surface model with various runoff parameterizations over a Tibetan river. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1488-1504.	1.2	37
36	Evaluation of Noah Frozen Soil Parameterization for Application to a Tibetan Meadow Ecosystem. Journal of Hydrometeorology, 2017, 18, 1749-1763.	0.7	37

#	Article	IF	CITATIONS
37	Validation of evapotranspiration and its long-term trends in the Yellow River source region. Journal of Water and Climate Change, 2017, 8, 495-509.	1.2	9
38	L-Band Microwave Emission of Soil Freeze–Thaw Process in the Third Pole Environment. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 5324-5338.	2.7	36
39	Determination of the Optimal Mounting Depth for Calculating Effective Soil Temperature at L-Band: Maqu Case. Remote Sensing, 2016, 8, 476.	1.8	9
40	Spatial and Temporal Soil Moisture Variations over China from Simulations and Observations. Advances in Meteorology, 2016, 2016, 1-14.	0.6	11
41	Blending Satellite Observed, Model Simulated, and in Situ Measured Soil Moisture over Tibetan Plateau. Remote Sensing, 2016, 8, 268.	1.8	70
42	Analysis of the Qinghai-Xizang Plateau Monsoon Evolution and Its Linkages with Soil Moisture. Remote Sensing, 2016, 8, 493.	1.8	11
43	Impacts of Noah model physics on catchmentâ€scale runoff simulations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 807-832.	1.2	26
44	Correlation analysis between initial preliminary breakdown process, the characteristic of radiation pulse, and the charge structure on the Qinghaiâ€Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,434.	1.2	10
45	A reappraisal of global soil effective temperature schemes. Remote Sensing of Environment, 2016, 183, 144-153.	4.6	12
46	Representativeness of the ground observational sites and up-scaling of the point soil moisture measurements. Journal of Hydrology, 2016, 533, 62-73.	2.3	17
47	Responses of soil moisture and thermal conductivity to precipitation in the mesa of the Loess Plateau. Environmental Earth Sciences, 2016, 75, 1.	1.3	13
48	Aquarius L-band scatterometer and radiometer observations over a Tibetan Plateau site. International Journal of Applied Earth Observation and Geoinformation, 2016, 45, 165-177.	1.4	10
49	Underâ€canopy turbulence and root water uptake of a <scp>T</scp> ibetan meadow ecosystem modeled by <scp>N</scp> oahâ€ <scp>MP</scp> . Water Resources Research, 2015, 51, 5735-5755.	1.7	23
50	Augmentations to the Noah Model Physics for Application to the Yellow River Source Area. Part I: Soil Water Flow. Journal of Hydrometeorology, 2015, 16, 2659-2676.	0.7	54
51	Summertime thermally-induced circulations over the Lake Nam Co region of the Tibetan Plateau. Journal of Meteorological Research, 2015, 29, 305-314.	0.9	9
52	Evidence for a recent warming and wetting in the source area of the Yellow River (SAYR) and its hydrological impacts. Journal of Chinese Geography, 2015, 25, 643-668.	1.5	27
53	Augmentations to the Noah Model Physics for Application to the Yellow River Source Area. Part II: Turbulent Heat Fluxes and Soil Heat Transport. Journal of Hydrometeorology, 2015, 16, 2677-2694.	0.7	49
54	Soil Moisture Mapping Using Combined Active/Passive Microwave Observations Over the East of the Netherlands. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8, 4355-4372.	2.3	31

#	Article	IF	CITATIONS
55	An Algorithm Based on the Standard Deviation of Passive Microwave Brightness Temperatures for Monitoring Soil Surface Freeze/Thaw State on the Tibetan Plateau. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 2775-2783.	2.7	28
56	Evapotranspiration estimated by using datasets from the Chinese FengYun-2D geostationary meteorological satellite over the Yellow River source area. Advances in Space Research, 2015, 55, 60-71.	1.2	7
57	Land-atmospheric water and energy cycle of winter wheat, Loess Plateau, China. International Journal of Climatology, 2014, 34, 3044-3053.	1.5	8
58	Assessment of Roughness Length Schemes Implemented within the Noah Land Surface Model for High-Altitude Regions. Journal of Hydrometeorology, 2014, 15, 921-937.	0.7	55
59	New evidence for the links between the local water cycle and the underground wet sand layer of a mega-dune in the Badain Jaran Desert, China. Journal of Arid Land, 2014, 6, 371.	0.9	12
60	An improved two-layer algorithm for estimating effective soil temperature in microwave radiometry using in situ temperature and soil moisture measurements. Remote Sensing of Environment, 2014, 152, 356-363.	4.6	34
61	Numerical simulations of fractional vegetation coverage influences on the convective environment over the source region of the Yellow River. Meteorology and Atmospheric Physics, 2013, 120, 1-10.	0.9	14
62	An Improvement of Roughness Height Parameterization of the Surface Energy Balance System (SEBS) over the Tibetan Plateau. Journal of Applied Meteorology and Climatology, 2013, 52, 607-622.	0.6	116
63	Validation of SMOS Soil Moisture Products over the Maqu and Twente Regions. Sensors, 2012, 12, 9965-9986.	2.1	150
64	Effect of pixel scale on evapotranspiration estimation by remote sensing over oasis areas in north-western China. Environmental Earth Sciences, 2012, 67, 2301-2313.	1.3	13
65	Numerical analysis of air-water-heat flow in unsaturated soil: Is it necessary to consider airflow in land surface models?. Journal of Geophysical Research, 2011, 116, .	3.3	68
66	A simulation analysis of the advective effect on evaporation using a twoâ€phase heat and mass flow model. Water Resources Research, 2011, 47, .	1.7	73
67	Regional soil moisture retrievals and simulations from assimilation of satellite microwave brightness temperature observations. Environmental Earth Sciences, 2010, 61, 1289-1299.	1.3	6
68	Application and improvement of an adaptive ensemble Kalman filter for soil moisture data assimilation. Science China Earth Sciences, 2010, 53, 1700-1708.	2.3	7
69	Response of runoff in the headwater region of the Yellow River to climate change and its sensitivity analysis. Journal of Chinese Geography, 2010, 20, 848-860.	1.5	30
70	Vertical atmospheric structure of the late summer clear days over the east Gansu loess plateau in China. Advances in Atmospheric Sciences, 2009, 26, 381-389.	1.9	2
71	Estimation of the Total Atmospheric Water Vapor Content and Land Surface Temperature Based on AATSR Thermal Data. Sensors, 2008, 8, 1832-1845.	2.1	9
72	Determination of regional land surface heat fluxes over a heterogeneous landscape of the Jiddah area of Saudi Arabia by using Landsat-7 ETM data. Hydrological Processes, 2007, 21, 1892-1900.	1.1	5

#	Article	IF	CITATIONS
73	Autumn daily characteristics of land surface heat and water exchange over the Loess Plateau mesa in China. Advances in Atmospheric Sciences, 2007, 24, 301-310.	1.9	19
74	Retrieval of Soil Moisture and Vegetation Water Content Using SSM/I Data over a Corn and Soybean Region. Journal of Hydrometeorology, 2005, 6, 854-863.	0.7	37
75	A time series based method for estimating relative soil moisture with ERS wind scatterometer data. Geophysical Research Letters, 2003, 30, .	1.5	29
76	Determination of land surface temperature and soil moisture from Tropical Rainfall Measuring Mission/Microwave Imager remote sensing data. Journal of Geophysical Research, 2003, 108, ACL 2-1.	3.3	73
77	Determination of Regional Land Surface Heat Flux Densities over Heterogeneous Landscape of HEIFE Integrating Satellite Remote Sensing with Field Observations Journal of the Meteorological Society of Japan, 2002, 80, 485-501.	0.7	30
78	Case studies of atmospheric moisture sources in the source region of the Yellow River from a Lagrangian perspective. International Journal of Climatology, 0, , .	1.5	3