
Bei Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7729634/publications.pdf Version: 2024-02-01

Reiliu

#	Article	IF	CITATIONS
1	Combined SEM and reflected light petrography of organic matter in the New Albany Shale (Devonian-Mississippian) in the Illinois Basin: A perspective on organic pore development with thermal maturation. International Journal of Coal Geology, 2017, 184, 57-72.	5.0	122
2	Organic matter content and type variation in the sequence stratigraphic context of the Upper Devonian New Albany Shale, Illinois Basin. Sedimentary Geology, 2019, 383, 101-120.	2.1	61
3	SEM petrography of dispersed organic matter in black shales: A review. Earth-Science Reviews, 2022, 224, 103874.	9.1	55
4	Silica diagenesis in the Lower Paleozoic Wufeng and Longmaxi Formations in the Sichuan Basin, South China: Implications for reservoir properties and paleoproductivity. Marine and Petroleum Geology, 2020, 121, 104594.	3.3	40
5	Compositional Control on Shale Pore Structure Characteristics across a Maturation Gradient: Insights from the Devonian New Albany Shale and Marcellus Shale in the Eastern United States. Energy & Fuels, 2021, 35, 7913-7929.	5.1	26
6	Insights of the pore system of lacustrine shales from immature to late mature with the aid of petrology, mineralogy and porosimetry: A case study of the Triassic Yanchang Formation of the Ordos Basin, North China. Journal of Petroleum Science and Engineering, 2021, 196, 107631.	4.2	23
7	Variability of rock mechanical properties in the sequence stratigraphic context of the Upper Devonian New Albany Shale, Illinois Basin. Marine and Petroleum Geology, 2020, 112, 104068.	3.3	21
8	Mineralogical and petrographic characteristics of the Ordovician-Silurian Wufeng-Longmaxi Shale in the Sichuan Basin and implications for depositional conditions and diagenesis of black shales. Marine and Petroleum Geology, 2022, 135, 105428.	3.3	21
9	Association of uranium with macerals in marine black shales: Insights from the Upper Devonian New Albany Shale, Illinois Basin. International Journal of Coal Geology, 2020, 217, 103351.	5.0	20
10	Origin of organic matter and organic pores in the overmature Ordovician-Silurian Wufeng-Longmaxi Shale of the Sichuan Basin, China. International Journal of Coal Geology, 2022, 253, 103970.	5.0	20
11	When a mudstone was actually a "sand†Results of a sedimentological investigation of the bituminous marl formation (Oligocene), Eastern Carpathians of Romania. Sedimentary Geology, 2019, 384, 12-28.	2.1	13
12	Assessing the thermal maturity of black shales using vitrinite reflectance: Insights from Devonian black shales in the eastern United States. International Journal of Coal Geology, 2020, 220, 103426.	5.0	13
13	Petrographic and chemical structure characteristics of amorphous organic matter in marine black shales: Insights from Pennsylvanian and Devonian black shales in the Illinois Basin. International Journal of Coal Geology, 2021, 235, 103676.	5.0	13
14	Variations of organic matter transformation in response to hydrothermal fluids: Example from the Indiana part of the Illinois Basin. International Journal of Coal Geology, 2020, 219, 103410.	5.0	12
15	Geochemistry of Middle Permian lacustrine shales in the Jimusar Sag, Junggar Basin, NW China: Implications for hydrothermal activity and organic matter enrichment. Journal of Asian Earth Sciences, 2022, 232, 105267.	2.3	12
16	Petrographic and Micro-FTIR Study of Organic Matter in the Upper Devonian New Albany Shale During Thermal Maturation: Implications for Kerogen Transformation. , 2019, , 165-188.		7
17	Cryptic burrow traces in black shales – a petrographic Rorschach test or the real thing?. Sedimentology, 2021, 68, 2707-2731.	3.1	7
18	Methane generation from low-maturity coals and shale source rocks at low temperatures (80–120°C) over 14–38Âmonths. Organic Geochemistry, 2021, 155, 104224.	1.8	4