
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7728968/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Parallel Structured Divide-and-Conquer Algorithm for Symmetric Tridiagonal Eigenvalue Problems. IEEE Transactions on Parallel and Distributed Systems, 2021, 32, 367-378.	4.0	9
2	KSPHPDDM and PCHPDDM: Extending PETSc with advanced Krylov methods and robust multilevel overlapping Schwarz preconditioners. Computers and Mathematics With Applications, 2021, 84, 277-295.	1.4	16
3	NEP. ACM Transactions on Mathematical Software, 2021, 47, 1-29.	1.6	5
4	Calculation of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si54.svg"><mml:mrow><mml:mi>i></mml:mi></mml:mrow></mml:math> modes of the multi-group neutron transport equation using the discrete ordinates and Finite Difference Method. Annals of Nuclear Energy, 2020, 137, 107077.	0.9	10
5	A polynomial Jacobi–Davidson solver with support for non-monomial bases and deflation. BIT Numerical Mathematics, 2020, 60, 295-318.	1.0	4
6	An extension of the Cayley transform method for a parameterized generalized inverse eigenvalue problem. Numerical Linear Algebra With Applications, 2020, 27, e2327.	0.9	1
7	Non-linear eigenvalue problems with GetDP and SLEPc: Eigenmode computations of frequency-dispersive photonic open structures. Computer Physics Communications, 2020, 257, 107509.	3.0	11
8	Inertiaâ€based spectrum slicing for symmetric quadratic eigenvalue problems. Numerical Linear Algebra With Applications, 2020, 27, e2293.	0.9	2
9	ELSI — An open infrastructure for electronic structure solvers. Computer Physics Communications, 2020, 256, 107459.	3.0	27
10	Computation of scattering resonances in absorptive and dispersive media with applications to metal-dielectric nano-structures. Journal of Computational Physics, 2020, 407, 109220.	1.9	7
11	Calculation of multiple eigenvalues of the neutron diffusion equation discretized with a parallelized finite volume method. Progress in Nuclear Energy, 2018, 105, 271-278.	1.3	3
12	MPI-CUDA parallel linear solvers for block-tridiagonal matrices in the context of SLEPc's eigensolvers. Parallel Computing, 2018, 74, 118-135.	1.3	4
13	Parallel Direct Solution of the Covariance-Localized Ensemble Square Root Kalman Filter Equations with Matrix Functions. Monthly Weather Review, 2018, 146, 2819-2836.	0.5	5
14	Stellarator microinstabilities and turbulence at low magnetic shear. Journal of Plasma Physics, 2018, 84, .	0.7	26
15	SIESTAâ€SIPs: Massively parallel spectrumâ€slicing eigensolver for an <i>ab initio</i> molecular dynamics package. Journal of Computational Chemistry, 2018, 39, 1806-1814.	1.5	7
16	Verification of the Parallel Pin-Wise Core Simulator pCTF/PARCSv3.2 in Operational Control Rod Drop Transient Scenarios. Nuclear Science and Engineering, 2017, 187, 254-267.	0.5	0
17	Multigroup neutron diffusion equation with the finite volume method in reactors using MOX fuels. Journal of Nuclear Science and Technology, 2017, 54, 1251-1260.	0.7	3
18	A Krylov–Schur solution of the eigenvalue problem for the neutron diffusion equation discretized with the Raviart–Thomas method. Journal of Nuclear Science and Technology, 2017, 54, 1085-1094.	0.7	7

#	Article	IF	CITATIONS
19	Numerical Integral Eigensolver for a Ring Region on the Complex Plane. Lecture Notes in Computational Science and Engineering, 2017, , 19-30.	0.1	0
20	Parallel Krylov Solvers for the Polynomial Eigenvalue Problem in SLEPc. SIAM Journal of Scientific Computing, 2016, 38, S385-S411.	1.3	23
21	On low-frequency variability of the midlatitude ocean gyres. Journal of Fluid Mechanics, 2016, 795, 423-442.	1.4	13
22	Design and implementation of Java bindings in Open MPI. Parallel Computing, 2016, 59, 1-20.	1.3	23
23	Optimized analysis of isotropic high-nuclearity spin clusters with GPU acceleration. Computer Physics Communications, 2016, 209, 70-78.	3.0	1
24	Assembly Discontinuity Factors for the Neutron Diffusion Equation discretized with the Finite Volume Method. Application to BWR. Annals of Nuclear Energy, 2016, 97, 76-85.	0.9	8
25	Restarted Q-Arnoldi-type methods exploiting symmetry in quadratic eigenvalue problems. BIT Numerical Mathematics, 2016, 56, 1213-1236.	1.0	4
26	Parallel iterative refinement in polynomial eigenvalue problems. Numerical Linear Algebra With Applications, 2016, 23, 730-745.	0.9	1
27	Control rod drop transient analysis with the coupled parallel code pCTF-PARCSv2.7. Annals of Nuclear Energy, 2016, 87, 308-317.	0.9	8
28	Development of a finite volume inter-cell polynomial expansion method for the neutron diffusion equation. Journal of Nuclear Science and Technology, 2016, 53, 1212-1223.	0.7	6
29	GPU Implementation of Krylov Solvers for Block-Tridiagonal Eigenvalue Problems. Lecture Notes in Computer Science, 2016, , 182-191.	1.0	1
30	Improving accuracy of parallel SLICOT model reduction routines for stable systems. , 2015, , .		0
31	Memory-efficient Arnoldi algorithms for linearizations of matrix polynomials in Chebyshev basis. Numerical Linear Algebra With Applications, 2014, 21, 569-588.	0.9	19
32	A parallel implementation of Davidson methods for large-scale eigenvalue problems in SLEPc. ACM Transactions on Mathematical Software, 2014, 40, 1-29.	1.6	11
33	A Jacobi–Davidson type method with a correction equation tailored for integral operators. Numerical Algorithms, 2013, 64, 85-103.	1.1	0
34	Harnessing GPU Power from High-level Libraries: Eigenvalues of Integral Operators with SLEPc. Procedia Computer Science, 2013, 18, 2591-2594.	1.2	3
35	Parallel finite element density functional computations exploiting grid refinement and subspace recycling. Computer Physics Communications, 2013, 184, 66-72.	3.0	4
36	Eigenvalue computations in the context of data-sparse approximations of integral operators. Journal of Computational and Applied Mathematics, 2013, 237, 171-181.	1.1	0

#	Article	IF	CITATIONS
37	Towards the availability of Java bindings in open MPI. , 2013, , .		9
38	Parallel Computation of 3-D Soil-Structure Interaction in Time Domain with a Coupled FEM/SBFEM Approach. Journal of Scientific Computing, 2012, 52, 446-467.	1.1	36
39	Strategies for spectrum slicing based on restarted Lanczos methods. Numerical Algorithms, 2012, 60, 279-295.	1.1	21
40	Multi-dimensional gyrokinetic parameter studies based on eigenvalue computations. Computer Physics Communications, 2012, 183, 922-930.	3.0	13
41	Computing subdominant unstable modes of turbulent plasma with a parallel Jacobi–Davidson eigensolver. Concurrency Computation Practice and Experience, 2011, 23, 2179-2191.	1.4	5
42	LARGE SCALE SIMULATION OF WAVE PROPAGATION IN SOILS INTERACTING WITH STRUCTURES USING FEM AND SBFEM. Journal of Computational Acoustics, 2011, 19, 75-93.	1.0	15
43	Fast hopfield neural networks using subspace projections. Neurocomputing, 2010, 73, 1794-1800.	3.5	0
44	Fast eigenvalue calculations in a massively parallel plasma turbulence code. Parallel Computing, 2010, 36, 339-358.	1.3	19
45	Parallel implementation of the MAGPACK package for the analysis of high-nuclearity spin clusters. Computer Physics Communications, 2010, 181, 1929-1940.	3.0	14
46	A Parallel Implementation of the Jacobi-Davidson Eigensolver and Its Application in a Plasma Turbulence Code. Lecture Notes in Computer Science, 2010, , 101-112.	1.0	3
47	Simulating control rod and fuel assembly motion using moving meshes. Annals of Nuclear Energy, 2008, 35, 291-303.	0.9	6
48	Parallel Eigensolvers for a Discretized Radiative Transfer Problem. Lecture Notes in Computer Science, 2008, , 336-348.	1.0	4
49	A Parallel Implementation of the Trace Minimization Eigensolver. Lecture Notes in Computer Science, 2008, , 255-268.	1.0	0
50	Parallel Arnoldi eigensolvers with enhanced scalability via global communications rearrangement. Parallel Computing, 2007, 33, 521-540.	1.3	45
51	Recent additions to SLEPc, the Scalable Library for Eigenvalue Problem computations. Proceedings in Applied Mathematics and Mechanics, 2007, 7, 1141703-1141704.	0.2	0
52	A parallel Krylov chur implementation for large Hermitian and nonâ€Hermitian eigenproblems. Proceedings in Applied Mathematics and Mechanics, 2007, 7, 2020083-2020084.	0.2	0
53	Evaluation of Several Variants of Explicitly Restarted Lanczos Eigensolvers and Their Parallel Implementations. , 2006, , 403-416.		2
54	A Survey of High-Quality Computational Libraries and Their Impact in Science and Engineering Applications. Lecture Notes in Computer Science, 2005, , 37-50.	1.0	2

#	Article	IF	CITATIONS
55	SLEPc. ACM Transactions on Mathematical Software, 2005, 31, 351-362.	1.6	747
56	High-quality computational tools for linear-algebra problems in FEM electromagnetic simulation [EM Programmer's Notebook]. IEEE Antennas and Propagation Magazine, 2004, 46, 110-119.	1.2	1
57	SLEPc: Scalable Library for Eigenvalue Problem Computations. Lecture Notes in Computer Science, 2003, , 377-391.	1.0	32
58	A Parallel Rendering Algorithm Based on Hierarchical Radiosity. Lecture Notes in Computer Science, 2003, , 523-536.	1.0	3
59	PARALLEL SLICOT MODEL REDUCTION ROUTINES: THE CHOLESKY FACTOR OF GRAMMIANS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2002, 35, 327-332.	0.4	2
60	High performance virtual reality distributed electronic commerce: application for the furniture and ceramics industries. , 0, , .		1
61	MICSc: a PETSc-Based Parallel Code for Large Eddy Simulation. , 0, , .		0